Spectroscopy and Spectral Analysis, Volume. 42, Issue 3, 749(2022)

Near-Infrared Spectral Modeling Based on Stacked Supervised Auto-Encoder

Zhi-xing SUN*... Zhong-gai ZHAO*; and Fei LIU |Show fewer author(s)
Author Affiliations
  • Key Laboratory for Advanced Process Control of Light Industry of the Ministry of Education, Jiangnan University, Wuxi 214122, China
  • show less
    Figures & Tables(12)
    The original spectra of corn
    The original spectra of yellow rice wine
    Structural of auto-encoder
    Structure of supervised auto-encoder structural
    Structure of stack supervised auto-encoder(a): Stack supervised AE; (b): Supervised AE
    SSAE training process
    The influence of different learning rates and training times on the model (a), (b): Corn; (c), (d): Yellow wine
    Prediction results of different modeling methods for corn data(a): PLSR model; (b): BP model; (c): SAE model; (d): SSAE model
    Prediction results of different modeling methods for yellow wine data(a): PLSR model; (b): BP model; (c): SAE model; (d): SSAE model
    • Table 1. Prediction results based on different pretreatment methods

      View table
      View in Article

      Table 1. Prediction results based on different pretreatment methods

      建模
      方法
      预处理
      方法
      玉米数据集黄酒数据集
      RMSEPRPDRMSEPPRD
      PLSR0.235 11.1090.2881.756
      一阶0.182 91.4250.330 11.537
      二阶0.189 81.3730.319 41.588
      SG0.235 11.1090.272 71.86
      MSC1.9990.130 45.7340.08
      SNV0.214 71.2140.789 80.642
      BP0.227 71.1450.172 32.944
      一阶0.130 51.9980.166 993.039
      二阶0.160 51.6240.197 42.57
      SG0.225 81.1550.157 93.212
      MSC0.948 20.274 90.195 12.6
      SNV0.2071.2590.3851.318
      SAE0.197 21.3220.145 93.478
      一阶0.105 32.4770.205 92.464
      二阶0.174 41.4950.194 22.612
      SG0.227 71.1450.172 72.937
      MSC0.181 31.4380.1683.02
      SNV0.231 51.1260.395 61.282
      SSAE0.2641.019 20.1204.227
      一阶0.060 44.3130.367 31.318
      二阶0.189 81.3740.281 91.8
      SG0.263 70.988 80.248 12.044
      MSC0.483 40.539 30.690 40.734 7
      SNV0.313 20.832 30.437 61.159
    • Table 2. Prediction results of corn data sets using different modeling methods

      View table
      View in Article

      Table 2. Prediction results of corn data sets using different modeling methods

      方法玉米数据集
      RMSEPRPD
      PLSR0.182 91.425
      BP0.130 51.998
      SAE0.105 32.477
      SSAE0.060 44.313
    • Table 3. Prediction results of yellow wine data sets using different modeling methods

      View table
      View in Article

      Table 3. Prediction results of yellow wine data sets using different modeling methods

      方法黄酒数据集
      RMSEPRPD
      PLSR0.272 71.860
      BP0.157 93.212
      SAE0.145 93.478
      SSAE0.1204.227
    Tools

    Get Citation

    Copy Citation Text

    Zhi-xing SUN, Zhong-gai ZHAO, Fei LIU. Near-Infrared Spectral Modeling Based on Stacked Supervised Auto-Encoder[J]. Spectroscopy and Spectral Analysis, 2022, 42(3): 749

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Feb. 10, 2021

    Accepted: Apr. 9, 2021

    Published Online: Apr. 19, 2022

    The Author Email: SUN Zhi-xing (zhixingsun@stu.jiangnan.edu.cn)

    DOI:10.3964/j.issn.1000-0593(2022)03-0749-08

    Topics