Journal of the Chinese Ceramic Society, Volume. 50, Issue 10, 2790(2022)

Progress on Theoretical Calculation of Kaolinite Intercalation Process

WANG Jie1...2, FU Liangjie1,2,3, and YANG Huaming1,23 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(62)

    [1] [1] OGAWA M, KURODA K. Photofunctions of intercalation compounds[J]. Chem Rev, 1995, 95(2): 399-438.

    [2] [2] COLEMAN J N, LOTYA M, O?NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J].Science, 2011, 331(6017): 568-571.

    [3] [3] NICOLOSI V, CHHOWALLA M, KANATZIDIS M G, et al. Liquid exfoliation of layered materials[J]. Science, 2013, 340(6139): 1226419.

    [4] [4] BERGAYA F, LAGALY G. Handbook of clay science[M]. Second edition. Amsterdam: Elsevier, 2013.

    [5] [5] GARDOLINSKI J E, CARRERA L C M. Layered polymer-kaolinite nanocomposites[J]. J Mater Sci, 35(12): 3113-3119.

    [6] [6] ZHAO Q, FU L, JIANG D, et al. Nanoclay-modulated oxygen vacancies of metal oxide[J]. Comm Chem 2019, 2(1): 1-10.

    [7] [7] LONG M, ZHANG Y, HUANG P, et al. Emerging nanoclay composite for effective hemostasis[J]. Adv Funct Mater, 2018, 28(10): 1704452.

    [8] [8] PENG K, FU L, LI X, et al. Stearic acid modified montmorillonite as emerging microcapsules for thermal energy storage[J]. Appl Clay Sci,2017, 138: 100-106.

    [9] [9] LIU S, YAN Z, FU L, et al. Hierarchical nano-activated silica nanosheets for thermal energy storage[J]. Sol Energ Mat Sol C, 2017,167: 140-149.

    [10] [10] LETAIEF S, DETELLIER C. Application of thermal analysis for the characterisation of intercalated and grafted organo-kaolinite nanohybrid materials[J]. J Therm Anal Calorim, 2011, 104(3):831-839.

    [13] [13] TAKENAWA R, KOMORI Y, HAYASHI S, et al. Intercalation of nitroanilines into kaolinite and second harmonic generation[J]. Chem Mater, 2001, 13(10): 3741-3746.

    [18] [18] STOTER M, ROSENFELDT S, BREU J. Tunable exfoliation of synthetic clays[J]. Annu Rev Mater Res, 2015, 45(1): 129-151.

    [19] [19] TOMA L M, GENGLER R Y N, CANGUSSU D, et al. New magnetic thin film hybrid materials built by the incorporation of Octanickel(II)-oxamato clusters between clay mineral platelets[J]. J Phys Chem Lett, 2011, 2(16): 2004-2008.

    [20] [20] WANG J, FU L, YANG H, et al. Energetics, interlayer molecular structures, and hydration mechanisms of dimethyl sulfoxide(DMSO)-kaolinite nanoclay guest-host interactions[J]. J Phys Chem Lett, 2021, 12(40): 9973-9981.

    [21] [21] SMRCOK L, TUNEGA D, RAMIREZ-CUESTA A J, et al. The combined Inelastic Neutron Scattering (INS) and solid-state DFT study of hydrogen-atoms dynamics in kaolinite-dimethylsulfoxide intercalate[J]. Clays Clay Miner, 2010, 58(1): 52-61.

    [23] [23] FERTIG H A, KOHN W. Symmetry of the atomic electron density in Hartree, Hartree-Fock, and density-functional theories[J]. Phys Rev A,2000, 62(5): 052511.

    [24] [24] GORLING A, LEVY M. Hybrid schemes combining the Hartree-Fock method and density-functional theory: Underlying formalism and properties of correlation functionals[J]. J Chem Phys, 1997, 106(7):2675-2680.

    [25] [25] THOMAS L H. The calculation of atomic fields[J]. Math Proc Cambridge, 1927, 23(5): 542-548.

    [26] [26] DIRAC P A M. Note on Exchange Phenomena in the Thomas Atom[J].Math Proc Cambridge, 1930, 26(3): 376-385.

    [27] [27] HOHENBERG P, KOHN W. Inhomogeneous Electron Gas[J]. Phys Rev, 1964, 136(3B): B864-B871.

    [28] [28] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J Comput Chem, 2006,27(15): 1787-1799.

    [29] [29] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction(DFT-D) for the 94 elements H-Pu[J]. J Chem Phys, 2010, 132(15):154104.

    [30] [30] TKATCHENKO A, SCHEFFLER M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data[J]. Phys Rev Lett, 2009, 102(7): 073005.

    [31] [31] ANDERSSON Y, LANGRETH D C, LUNDQVIST B I. van der Waals Interactions in density-functional theory[J]. Phys Rev Lett, 1996, 76(1):4.

    [32] [32] BECKE A D, JOHNSON E R. A density-functional model of the dispersion interaction[J]. J Chem Phys, 2005, 123(15): 154101.

    [33] [33] POUVREAU M, GREATHOUSE J A, CYGAN R T, et al. Structure of hydrated kaolinite edge surfaces: DFT results and further development of the clayFF classical force field with metal-O-H angle bending terms[J]. J Phys Chem C, 2019, 123(18): 11628-11638.

    [34] [34] MOCHIUTTI E, SEHWARTZ R, LIMA J, et al. Implementa??o do campo de for?a clayff no gromacs: Uma aplica??o em estrutura de caulinita[J]. Quím Nova, 2020, 43, 804-812.

    [35] [35] RIMSZA J M, JONES R E, CRISCENTI L J. Surface structure and stability of partially hydroxylated silica surfaces[J]. Langmuir, 2017,33(15): 3882-3891.

    [36] [36] MURALEEDHARAN M G, ASGAR H, MOHAMMED S, et al. Elucidating thermally induced structural and chemical transformations in kaolinite using reactive molecular dynamics simulations and X-ray scattering measurements[J]. Chem Mater, 2020, 32(2): 651-662.

    [37] [37] CHENG H, ZHANG S, LIU Q, et al. The molecular structure of kaolinite-potassium acetate intercalation complexes: A combined experimental and molecular dynamic simulation study[J]. Appl Clay Sci, 2015, 116-117: 273-280.

    [38] [38] HATó Z, MAKó é, KRISTóF T. Water-mediated potassium acetate intercalation in kaolinite as revealed by molecular simulation[J]. J Mol Model, 2014, 20(3): 1-10.

    [39] [39] HEINZ H, LIN T-J, KISHORE Mishra R, et al. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE Force Field[J]. Langmuir,2013, 29(6): 1754-1765.

    [40] [40] SHIVAKUMAR D, WILLIAMS J, WU Y, et al. Prediction of absolute solvation free energies using molecular dynamics free nnergy perturbation and the OPLS force field[J]. J Chem Theory Comput,2010, 6(5): 1509-1519.

    [41] [41] WANG X, TANG C, WANG Q, et al. Selection of optimal polymerization degree and force field in the molecular dynamics simulation of insulating paper cellulose[J]. Energies, 2017, 10(9):1377.

    [42] [42] HOU X J, LI H, LI S, et al. Theoretical study of the intercalation behavior of ethylene glycol on kaolinite[J]. J Phys Chem C, 2014,118(45): 26017-26026.

    [44] [44] MAKó é, KOVáCS A, KRISTóF T. Influencing parameters of direct homogenization intercalation of kaolinite with urea, dimethyl sulfoxide, formamide, and N-methylformamide[J]. Appl Clay Sci, 2019, 182:105287.

    [46] [46] CHENG H, YANG J, FROST R L, et al. Thermal analysis and Infrared emission spectroscopic study of kaolinite-potassium acetate intercalate complex[J]. J Therm Anal Calorime, 2011, 103(2): 507-513.

    [47] [47] ZHANG Y, LIU Q, WU Z, et al. Thermal behavior analysis of kaolinite-dimethylsulfoxide intercalation complex[J]. J Therm Anal Calorime, 2012, 110(3): 1167-1172.

    [48] [48] SONG K, WANG X, QIAN P, et al. Theoretical study of interaction of formamide with kaolinite[J]. Comput Theor Chem, 2013, 1020: 72-80.

    [49] [49] LIU Q, ZHANG S, CHENG H, et al. Thermal behavior of kaolinite-urea intercalation complex and molecular dynamics simulation for urea molecule orientation[J]. J Therm Anal Calorim,2014, 117(1): 189-196.

    [50] [50] SONG K H, ZHONG M J, WANG L, et al. Theoretical study of interaction of amide molecules with kaolinite[J]. Comput Theor Chem,2014, 1050: 58-67.

    [51] [51] DU X M, LIU Q F, CHENG H F. Preparation and analysis of kaolinite intercalated by potassium acetate[J]. Adv Mater Res, 2010, 150-151:1220-1224.

    [52] [52] MICHALKOVá A, TUNEGA D, NAGY L T. Theoretical study of interactions of dickite and kaolinite with small organic molecules[J]. J Mol Struct, 2002, 581(1-3): 37-49.

    [53] [53] THOMPSON J G. Crystal structure of kaolinite: Dimethylsulfoxide intercalate[J]. Clay Clay Miner, 1985, 33(6): 490-500.

    [54] [54] RAUPACH M. Nuclear magnetic resonance, infrared, and X-ray powder diffraction study of dimethylsulfoxide and dimethylselenoxide intercalates with kaolinite[J]. Clay Clay Miner, 1987, 35(3): 208-219.

    [55] [55] MICHALKOVá A, TUNEGA D. Kaolinite: Dimethylsulfoxide intercalate: A theoretical study[J]. J Phys Chem C, 2007, 111(30):11259-11266.

    [56] [56] OLEJNIK S, AYLMORE L A G, POSNER A M, et al. Infrared spectra of kaolin mineral-dimethyl sulfoxide complexes[J]. J Phys Chem, 1968,72(1): 241-249.

    [57] [57] SCHOLTZOVá E, SMR?OK L. Hydrogen bonding and vibrational Spectra in Kaolinite-Dimethylsulfoxide and -Dimethylselenoxide Intercalates-A Solid-State Computational Study[J]. Clays Clay Miner,2009, 57(1): 54-71.

    [58] [58] ABOU-EL-SHERBINI K S, ELZAHANY E A M, WAHBA M A, et al.Evaluation of some intercalation methods of dimethylsulphoxide onto HCl-treated and untreated Egyptian kaolinite[J]. Appl Clay Sci, 2017,137: 33-42.

    [59] [59] FROST R L, KRISTOF J, HORVATH E, et al. Deintercalation of dimethylsulphoxide intercalated kaolinites - a DTA/TGA and Raman spectroscopic study[J]. Thermochim Acta, 1999, 327(1/2): 155-166.

    [60] [60] ZHANG S, LIU Q, CHENG H, et al. Combined experimental and theoretical investigation of interactions between kaolinite inner surface and intercalated dimethyl sulfoxide[J]. Appl Surf Sci, 2015, 331:234-240.

    [61] [61] ZHANG S, LIU Q, CHENG H, et al. Mechanism responsible for intercalation of dimethyl sulfoxide in kaolinite: Molecular dynamics simulations[J]. Appl Clay Sci, 2018, 151: 46-53.

    [62] [62] NAAMEN S, BEN RHAIEM H, JEMAI S, et al. Study of disorder caused by the dehydration of hydrated kaolinite[J]. Mater Sci Forum,2001, 378-381: 545-550.

    [65] [65] FROST R L, KRISTOF J, PAROZ G N, et al. Role of Water in the Intercalation of Kaolinite with Hydrazine[J]. J Colloid Interf Sci, 1998,208(1): 216-225.

    [66] [66] FROST R L, KRISTOF J, PAROZ G N, et al. Molecular structure of dimethyl sulfoxide intercalated kaolinites[J]. J Phys Chem B, 1998,102(43): 8519-8532.

    [67] [67] YARIV S, LAPIDES I. Thermo-infrared-spectroscopy analysis of dimethylsulfoxide-kaolinite intercalation complexes[J]. J Therm Anal Calorim, 2008, 94(2): 433-440.

    [68] [68] BISH D L. Rietveld refinement of the kaolinite structure at 1.5 K[J].Clays Clay Miner, 1993, 41(6): 738-744.

    [69] [69] PANG J, LIANG Y, MASUDA Y, et al. Swelling phenomena of the nonswelling clay induced by CO2 and water cooperative adsorption in Janus-surface micropores[J]. Environ Sci Technol, 2020, 54(9):5767-5773.

    [70] [70] BOUGEARD D, SMIRNOV K S. Modelling studies of water in crystalline nanoporous aluminosilicates[J]. Phys Chem Chem Phys,2007, 9(2): 226-245.

    [71] [71] JI N, YING H. Molecular dynamics simulation on structure of water molecules in a kaolinite-water system[J]. Acta Phys-Chim Sin, 2009,25(6): 1167-1172.

    [72] [72] ZHANG S, LIU Q, CHENG H, et al. Intercalation of dodecylamine into kaolinite and its layering structure investigated by molecular dynamics simulation[J]. J Colloid Interf Sci, 2014, 430: 345-350.

    [73] [73] MAKó é, KOVáCS A, KATONA R, et al. Characterization of kaolinite-cetyltrimethylammonium chloride intercalation complex synthesized through eco-friend kaolinite-urea pre-intercalation complex[J]. Colloid Surf A, 2016, 508: 265-273.

    Tools

    Get Citation

    Copy Citation Text

    WANG Jie, FU Liangjie, YANG Huaming. Progress on Theoretical Calculation of Kaolinite Intercalation Process[J]. Journal of the Chinese Ceramic Society, 2022, 50(10): 2790

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Mar. 1, 2022

    Accepted: --

    Published Online: Jan. 22, 2023

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20220150

    Topics