Acta Optica Sinica, Volume. 37, Issue 5, 519001(2017)

Generation of Quadrature Squeezed Vacuum Light Field for Cesium D1 Line

Zhang Yan1,2, Liu Jinhong1,2, Ma Rong1,2, Wang Dan1,2, Han Yuhong1,2, and Zhang Junxiang1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(33)

    [1] [1] Appel J, Figueroa E, Korystov D, et al. Quantum memory for squeezed light[J]. Phys Rev Lett, 2008, 100(9): 093602.

    [2] [2] Hald J, Srensen J L, Schori C, et al. Spin squeezed atoms: a macroscopic entangled ensemble created by light[J]. Phys Rev Lett, 1999, 83(7): 1319-1322.

    [3] [3] Yuan Z S, Chen Y A, Zhao B, et al. Experimental demonstration of a BDCZ quantum repeater node[J]. Nature, 2008, 454(7208): 1098-1101.

    [4] [4] Polzik E S, Carri J, Kimble H J. Spectroscopy with squeezed light[J]. Phys Rev Lett, 1992, 68(20): 3020-3023.

    [5] [5] Kimble H J. The quantum internet[J]. Nature, 2008, 453(7198): 1023-1030.

    [6] [6] Slusher R E, Hollberg L W, Yurke B, et al. Observation of squeezed states generated by four-wave mixing in an optical cavity[J]. Phys Rev Lett, 1985, 55(22): 2409-2412.

    [7] [7] McCormick C F, Boyer V, Arimondo E, et al. Strong relative intensity squeezing by four-wave mixing in rubidium vapor[J]. Opt Lett, 2007, 32(2): 178-180.

    [8] [8] Marino A M, Pooser R C, Boyer V, et al. Tunable delay of Einstein-Podolsky-Rosen entanglement[J]. Nature, 2009, 457(7231): 859-862.

    [9] [9] Wang D, Hu L Y, Pang X M, et al. Quadripartite entanglement from a double three-level λ-type-atom model[J]. Phys Rev A, 2013, 88(4): 042314.

    [10] [10] Guo M J, Zhou H T, Wang D, et al. Experimental investigation of high-frequency-difference twin beams in hot cesium atoms[J]. Phys Rev A, 2014, 89(3): 033813.

    [11] [11] Qin Z Z, Cao L M, Wang H L, et al. Experimental generation of multiple quantum correlated beams from hot rubidium vapor[J]. Phys Rev Lett, 2014, 113(2): 023602.

    [12] [12] Qin Z Z, Cao L M, Jing J T. Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes[J]. Appl Phys Lett, 2015, 106(21): 211104.

    [13] [13] Wu L A, Kimble H J, Hall J L, et al. Generation of squeezed states by parametric down conversion[J]. Phys Rev Lett, 1986, 57(20): 2520-2523.

    [15] [15] Eberle T, Steinlechner S, Bauchrowitz J, et al. Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection[J]. Phys Rev Lett, 2010, 104(25): 251102.

    [16] [16] Zhou Y Y, Jia X J, Li F, et al. Experimental generation of 8.4 dB entangled state with an optical cavity involving a wedged type-II nonlinear crystal[J]. Opt Express, 2015, 23(4): 4952-4959.

    [17] [17] Vahlbruch H, Mehmet M, Danzmann K, et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Phys Rev Lett, 2016, 117(11): 110801.

    [18] [18] Suzuki S, Yonezawa H, Kannari F, et al. 7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4[J]. Appl Phys Lett, 2006, 89(6): 061116.

    [19] [19] Takeno Y, Yukawa M, Yonezawa H, et al. Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement[J]. Opt Express, 2007, 15(7): 4321-4327.

    [20] [20] Burks S, Ortalo J, Chiummo A, et al. Vacuum squeezed light for atomic memories at the D2 cesium line[J]. Opt Express, 2009, 17(5): 3777-3781.

    [21] [21] Tanimura T, Akamatsu D, Yokoi Y, et al. Generation of a squeezed vacuum resonant on a rubidium D1 line with periodically poled KTiOPO4[J]. Opt Lett, 2006, 31(15): 2344-2346.

    [22] [22] Hetet G, Glock O, Pilypas K A, et al. Squeezed light at 795 nm using periodically poled KTP[C]. CLEOE-IQEC, 2007, IF5: IF5_3.

    [23] [23] Predojevic' A, Zhai Z, Caballero J M, et al. Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator[J]. Phys Rev A, 2008, 78(6): 063820.

    [24] [24] Han Y S, Wen X, He J, et al. Improvement of vacuum squeezing resonant on the rubidium D1 line at 795 nm[J]. Opt Express, 2016, 24(3): 2350-2359.

    [25] [25] Pinotsi D, Imamoglu A. Single photon absorption by a single quantum emitter[J]. Phys Rev Lett, 2008, 100(9): 093603.

    [27] [27] Zhang Y, Liu J H, Wu J Z, et al. Single-frequency tunable 447.3 nm laser by frequency doubling of tapered amplified diode laser at cesium D1 line[J]. Opt Express, 2016, 24(17): 19769-19775.

    [28] [28] Walls D F, Milburn G J. Quantum optics[M]. New York: Springer Science & Business Media, 2007.

    [29] [29] Drever R W P, Hall J L, Kowalski F V, et al. Laser phase and frequency stabilization using an optical resonator[J]. Appl Phys B, 1983, 31(2): 97-105.

    [30] [30] Schneider K, Bruckmeier R, Hansen H, et al. Bright squeezed-light generation by a continuous-wave semimonolithic parametric amplifier[J]. Opt Lett, 1996, 21(17): 1396-1398.

    [31] [31] Sun Zhini, Feng Jinxia, Wan Zhenju, et al. Generation of bright squeezed light at 1.5 μm telecommunication band and its Wigner function reconstruction[J]. Acta Physica Sinica, 2016, 65(4): 044203.

    [32] [32] Liu Zengjun, Zhai Zehui, Sun Hengxin, et al. Generation of low-frequency squeezed states[J]. Acta Physica Sinica, 2016, 65(6): 060401.

    [33] [33] Zhang Yan, Yu Xudong, Di Ke, et al. Locking the phase of balanced homodyne detection system for squeezed light[J]. Acta Physica Sinica, 2013, 62(8): 084024.

    CLP Journals

    [1] Xue Chunling, Xu Yuena. Effect of Loss on Intensity-Difference Squeezing and Amplitude-Quadrature Squeezing[J]. Laser & Optoelectronics Progress, 2018, 55(7): 72702

    Tools

    Get Citation

    Copy Citation Text

    Zhang Yan, Liu Jinhong, Ma Rong, Wang Dan, Han Yuhong, Zhang Junxiang. Generation of Quadrature Squeezed Vacuum Light Field for Cesium D1 Line[J]. Acta Optica Sinica, 2017, 37(5): 519001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Nonlinear Optics

    Received: Nov. 23, 2016

    Accepted: --

    Published Online: May. 5, 2017

    The Author Email:

    DOI:10.3788/aos201737.0519001

    Topics