Semiconductor Optoelectronics, Volume. 43, Issue 2, 218(2022)

Progresses and Challenges of Silicon-based Photonic Chips

MA Haoran... LI Xiaomin, WANG Yuehai* and YANG Jianyi |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(49)

    [3] [3] Siew S Y, Li B, Gao F, et al. Review of silicon photonics technology and platform development[J]. J. of Lightwave Technol., 2021, 39(13): 4374-4389.

    [5] [5] Debray A, Malinge J, Mounier E. Silicon Photonics Market and Technology Report 2021[R]. Yole Development, 2021.

    [6] [6] Dhiman A. Silicon photonics: A review[J]. IOSR J. of Appl. Phys., 2013, 3(5): 67-79.

    [7] [7] Blumenthal D J, Heideman R, Geuzebroek D, et al. Silicon nitride in silicon photonics[J]. Proc. of the IEEE, 2018, 106(12): 2209-2231.

    [10] [10] Lischke S, Peczek A, Morgan J S, et al. Ultra-fast germanium photodiode with 3-dB bandwidth of 265GHz[J]. Nature Photonics, 2021,15: 925-931.

    [11] [11] Ye Z C, Fülp A, Helgasonó B, et al. Low-loss high-Q silicon-rich silicon nitride microresonators for Kerr nonlinear optics[J]. Opt. Lett., 2019, 44(13): 3326-3329.

    [13] [13] Shi B, Zhao H, Wang L, et al. Continuous-wave electrically pumped 1550nm lasers epitaxially grown on on-axis (001) silicon[J]. Optica, 2019, 6(12): 1507-1514.

    [14] [14] Wan Y, Zhang S, Norman J C, et al. Tunable quantum dot lasers grown directly on silicon[J]. Optica, 2019, 6(11): 1394-1400.

    [15] [15] Poberaj G, Koechlin M, Sulser F, et al. Ion-sliced lithium niobate thin films for active photonic devices[J]. Optical Materials, 2009, 31(7): 1054-1058.

    [16] [16] Qi Y F, Li Y. Integrated lithium niobate photonics[J]. Nanophotonics, 2020, 9(6): 1287-1320.

    [17] [17] Padmaraju K, Bergman K. Resolving the thermal challenges for silicon microring resonator devices[J]. Nanophotonics, 2014, 3(4/5): 269-281.

    [18] [18] Zhang M, Wang C, Cheng R, et al. Monolithic ultra-high-Q lithium niobate microring resonator[J]. Optica, 2017, 4(12): 1536-1537.

    [19] [19] Zhang J H, Fang Z W, Lin J T, et al. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator[J]. Nanomaterials (Basel), 2019, 9(9): 1218.

    [20] [20] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562: 101-104.

    [21] [21] Wang C, Zhang M, Stern B, et al. Nanophotonic lithium niobate electro-optic modulators[J]. Opt. Express, 2018, 26(2): 1547-1555.

    [22] [22] Zhou G Q, Zhou L J, Guo Y Y, et al. High-speed silicon electro-optic modulator based on a single multimode waveguide[C]// 2019 Optical Fiber Communications Conference and Exhibition (OFC), 2019.

    [23] [23] Wang M R, Xu G D, Lin F, et al. Single-mode/multimode waveguide electro-optic grating coupler modulator[J]. Appl. Phys. Lett., 1995, 66: 2628.

    [25] [25] Lal V, Studenkov P, Forst T, et al. 1.6Tbps coherent 2-channel transceiver using a monolithic Tx/Rx InP PIC and single SiGe ASIC[C]// 2020 Optical Fiber Communications Conference and Exhibition(OFC), 2020.

    [26] [26] Fathololoimi S, Nguyen K, Mahalingam H, et al. 1.6Tbps silicon photonics integrated circuit for co-packaged optical-IO switch applications[C]// 2020 Optical Fiber Communications Conference and Exhibition (OFC), 2020.

    [28] [28] He Y, Zhang Y, Wang H W, et al. Design and experimental demonstration of a silicon multi-dimensional (de)multiplexer for wavelength-, mode- and polarization-division (de)multiplexing[J]. Opt. Lett., 2020, 45(10): 2846-2849.

    [29] [29] Guo X H, Xiang J L, Zhang Y J, et al. Integrated neuromorphic photonics: Synapses, neurons, and neural networks[J]. Adv. Photonics Research, 2021, 2(6): 2000212.

    [31] [31] Shen Y C, Harris N C, Skirlo S, et al. Deep learning with coherent nanophotonic circuits[J]. Nature Photonics, 2017, 11: 441-446.

    [32] [32] Bangari V, Marquez B A, Miller H, et al. Digital electronics and analog photonics for convolutional neural networks (DEAP-CNNs)[J]. IEEE J. of Sel. Topics in Quantum Electronics, 2020, 26(1): 1-13.

    [33] [33] Fang M Y S, Manipatruni S, Wierzynski C, et al. Design of optical neural networks with component imprecisions[J]. Opt. Express, 2019, 27(10): 14009-14029.

    [34] [34] Tian Y, Zhao Y, Liu S P, et al. Scalable and compact photonic neural chip with low learning-capability-loss[J]. Nanophotonics, 2022, 11(2): 329-344.

    [35] [35] Williamson I A D, Hughes T W, Minkov M, et al. Reprogrammable electro-optic nonlinear activation functions for optical neural networks[J]. IEEE J. of Sel. Topics in Quantum Electronics, 2020, 26(1): 1-12.

    [36] [36] Tait A N, De Lima T F, Zhou E, et al. Neuromorphic photonic networks using silicon photonic weight banks[J]. Scientific Reports, 2017, 7: 7430.

    [37] [37] Tait A N, De Ferreira L T, Nahmias M A, et al. Silicon photonic modulator neuron[J]. Physical Review Applied, 2019, 11(6): 064043.

    [38] [38] Roques-Carmes C, Shen Y C, Zanoci C, et al. Heuristic recurrent algorithms for photonic ising machines[J]. Nature Communications, 2020, 11: 249.

    [39] [39] Vandoorne K, Mechet P, Vaerenbergh T V, et al. Experimental demonstration of reservoir computing on a silicon photonics chip[J]. Nature Communications, 2014, 5(1): 3541.

    [41] [41] Leuermann J, Stamenkovic V, Ramirez-Priego P, et al. Coherent silicon photonic interferometric biosensor with an inexpensive laser source for sensitive label-free immunoassays[J]. Opt. Lett., 2020, 45(24): 6595-6598.

    [42] [42] Chang Y H, Dong B W, Ma Y M, et al. Vernier effect-based tunable mid-infrared sensor using silicon-on-insulator cascaded rings[J]. Opt. Express, 2020, 28: 6251-6260.

    [43] [43] Wang J W, Medina-Snchez M, et al. Silicon-based integrated label-free optofluidic biosensors: Latest advances and roadmap[J]. Adv. Materials Technologies, 2020, 5(6): 1901138.

    [44] [44] Lo S M, Hu S, Gaur G, et al. Photonic crystal microring resonator for label-free biosensing[J]. Opt. Express, 2017, 25(6): 7046-7054.

    [45] [45] Diekmann R, Helle Y I, Ie C I, et al. Chip-based wide field-of-view nanoscopy[J]. Nature Photonics, 2017, 11(5): 322-328.

    [46] [46] Ragman M, Stott M A, Harrington M, et al. On demand delivery and analysis of single molecules on a programmable nanopore-optofluidic device[J]. Nature Communications, 2019, 10: 3712.

    [47] [47] Patel D. Rockley photonics will revolutionize healthcare by measuring biomarkers such as glucose with lasers in the apple watch[DB/OL]. (2021-06-22). https://semianalysis.com/rockley-photonics-will-revolutionize-healthcare-by-measuring-biomarkers-such-as-glucose-with-lasers-in-an-apple-watch/

    [48] [48] Guo Y J, Guo Y H, Li C S, et al. Integrated optical phased arrays for beam forming and steering[J]. Appl. Sciences, 2021, 11(9): 4017.

    [49] [49] Li Y Z, Chen B S, Na Q X, et al. Wide-steering-angle high-resolution optical phased array[J]. Photonics Research, 2021, 9(12): 2511-2518.

    [50] [50] Phare C T, Shin M C, Miller S A, et al. Silicon optical phased array with high-efficiency beam formation over 180 degree field of view[J]. arXiv 2018, arXiv: 1802.04624.

    [51] [51] Wang P F, Luo G Z, Yu H Y, et al. Improving the performance of optical antenna for optical phased arrays through high-contrast grating structure on SOI substrate[J]. Opt. Express, 2019, 27(3): 2703-2712.

    [52] [52] Poulton C V, Byrd M J, Russo P, et al. Long-range LiDAR and free-space data communication with high-performance optical phased arrays[J]. IEEE J. of Sel. Topics in Quantum Electronics, 2019, 25(5): 1-8.

    [53] [53] Wang J W, Sciarrino F, Laing A, et al. Integrated photonic quantum technologies[J]. Nature Photonics, 2020, 14: 273-284.

    [54] [54] Pelucchi E, Fagas G, Aharonovich I, et al. The potential and global outlook of integrated photonics for quantum technologies[J]. Nature Rev. Phys., 2022, 4: 194-208.

    [56] [56] Moody G, Chang L, Steiner T J, et al. Chip-scale nonlinear photonics for quantum light generation[J]. AVS Quantum Science, 2020, 2: 041702.

    [58] [58] Liu Y W, Wu C, Gu X W, et al. High-spectral-purity photon generation from a dual-interferometer-coupled silicon microring[J]. Opt. Lett., 2020, 45(1): 73-76.

    [59] [59] Llewellyn D, Ding Y, Faruque I I, et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon[J]. Nature Rev. Phys., 2020, 16: 148-153.

    [60] [60] Arrazola J M, Bergholm V, Brdler K, et al. Quantum circuits with many photons on a programmable nanophotonic chip[J]. Nature, 2021, 591: 54-60.

    [61] [61] Reimer C, Sciara S, Roztocki P, et al. High-dimensional one-way quantum processing implemented on d-level cluster states[J]. Nature Physics, 2019, 15: 148-153.

    Tools

    Get Citation

    Copy Citation Text

    MA Haoran, LI Xiaomin, WANG Yuehai, YANG Jianyi. Progresses and Challenges of Silicon-based Photonic Chips[J]. Semiconductor Optoelectronics, 2022, 43(2): 218

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Mar. 4, 2022

    Accepted: --

    Published Online: Jul. 21, 2022

    The Author Email: Yuehai WANG (wyuehai@zju.edu.cn)

    DOI:10.16818/j.issn1001-5868.2022030402

    Topics