Journal of the Chinese Ceramic Society, Volume. 52, Issue 1, 56(2024)
Preparation and Performance Characterization of Cross-Linked Carbon Nanotubes Shaped Na2SO4·10H2O Based Composite Phase Change Energy Storage Materials
[1] [1] TIE J, LIU X, TIE S N, et al. Packing and properties of composite phase change energy storage materials based on SiC nanowires and Na2SO4·10H2O[J]. J Therm Anal Calorim, 2020, 139(2): 855-862.
[2] [2] YAN J H, HU D C, MA W S, et al. Preparation and characterization of soy polyols-based PU shell microencapsulated phase change materials for reliable thermal energy storage[J]. Int J Energy Res, 2022, 46(15): 23364-23376.
[3] [3] WANG B M, SHI M, YAO H, et al. Preparation and application of low-temperature binary eutectic lauric acid-stearic acidSiO2 phase change microcapsules[J]. Energy Build, 2023, 279: 112706.
[4] [4] ZHANG Y A, XIU J H, TANG B T, et al. Novel semi-interpenetrating network structural phase change composites with high phase change enthalpy[J]. AlChE J, 2018, 64(2): 688-696.
[5] [5] LIU K, YUAN Z F, ZHAO H X, et al. Properties and applications of shape-stabilized phase change energy storage materials based on porous material support—a review[J]. Mater Today Sustain, 2023, 21: 100336.
[6] [6] CHIBANI A, MEROUANI S, BENMOUSSA F, et al. A strategy for enhancing heat transfer in phase change material-based latent thermal energy storage unit via nano-oxides addition: A study applied to a shell-and-tube heat exchanger[J]. J Environ Chem Eng, 2021, 9(6): 106744.
[7] [7] ERZIN F, KONUKLU Y. Facile synthesis of resorcinol-melamineformaldehyde microcapsules containing hexadecane for thermal energy storage[J]. J Energy Storage, 2021, 44: 103285.
[8] [8] CHEN Z H, WANG J C, YU F, et al. Preparation and properties of graphene oxide-modified poly(melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage[J]. J Mater Chem A, 2015, 3(21): 11624-11630.
[9] [9] SU J F, WANG L X, REN L. Fabrication and thermal properties of microPCMs: Used melamine-formaldehyde resin as shell material[J]. J Appl Polym Sci, 2006, 101(3): 1522-1528.
[10] [10] ZHAO K, GUO Z X, WANG J F, et al. Phase change n-Octadecane microencapsulated in titanium dioxide nanoparticle-doped polymer for photothermal conversion and photocatalysis[J]. Sol Energy, 2023, 254: 73-87.
[11] [11] DIXIT P, PARVATE S, REDDY V J, et al. Effect of surfactants on encapsulation of hexadecane phase change material in calcium carbonate shell for thermal energy storage[J]. J Energy Storage, 2022, 55: 105491.
[12] [12] NEAGOE C, TUDOR I A, CIOBOTA C F, et al. Demonstration of phase change thermal energy storage in zinc oxide microencapsulated sodium nitrate[J]. Appl Sci, 2021, 11(13): 6234.
[13] [13] ZHANG Z S, LIAN Y D, XU X B, et al. Synthesis and characterization of microencapsulated sodium sulfate decahydrate as phase change energy storage materials[J]. Appl Energy, 2019, 255: 113830.
[14] [14] LIU Xin, TIE Jian, TIE Shengnian. J Synth Cryst, 2016, 45(4): 986-994.
[15] [15] WANG C J, LIANG W D, YANG Y Y, et al. Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage[J]. Renew Energy, 2020, 153: 182-192.
[16] [16] YANG L, YANG J, TANG L S, et al. Hierarchically porous PVA aerogel for leakage-proof phase change materials with superior energy storage capacity[J]. Energy Fuels, 2020, 34(2): 2471-2479.
[17] [17] LU B H, ZHANG Y X, SUN D, et al. Experimental investigation on thermal properties of paraffin/expanded graphite composite material for low temperature thermal energy storage[J]. Renew Energy, 2021, 178: 669-678.
[18] [18] ZOU T, LIANG X H, WANG S F, et al. Effect of expanded graphite size on performances of modified CaCl2·6H2O phase change material for cold energy storage[J]. Microporous Mesoporous Mater, 2020, 305: 110403.
[19] [19] XIA Y P, CUI W W, ZHANG H Z, et al. Synthesis of three-dimensional graphene aerogel encapsulated n-octadecane for enhancing phase-change behavior and thermal conductivity[J]. J Mater Chem A, 2017, 5(29): 15191-15199.
[20] [20] MIN P, LIU J, LI X F, et al. Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion[J]. Adv Funct Materials, 2018, 28(51): 1805365.
[21] [21] QI G Q, YANG J, BAO R Y, et al. Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage[J]. Nano Res, 2017, 10(3): 802-813.
[22] [22] WANG T, ZHAO S Y, LIU S, et al. Effect of porous carbon on thermal and physical properties of composite pure alkane/expanded vermiculite phase change energy storage materials[J]. J Energy Storage, 2022, 54: 105220.
[23] [23] LI T Y, PAN H, XU L H, et al. Shape-stabilized phase change material with high phase change enthalpy made of PEG compounded with lignin-based carbon[J]. Int J Biol Macromol, 2022, 213: 134-144.
[24] [24] WANG M, LI P, YU F Q. Hierarchical porous carbon foam-based phase change composite with enhanced loading capacity and thermal conductivity for efficient thermal energy storage[J]. Renew Energy, 2021, 172: 599-605.
Get Citation
Copy Citation Text
LIU Xin, TIE Jian, WANG Chang-an, TIE Shengnian. Preparation and Performance Characterization of Cross-Linked Carbon Nanotubes Shaped Na2SO4·10H2O Based Composite Phase Change Energy Storage Materials[J]. Journal of the Chinese Ceramic Society, 2024, 52(1): 56
Received: May. 3, 2023
Accepted: --
Published Online: Jul. 30, 2024
The Author Email: Shengnian TIE (tieshengnian@163.com)
CSTR:32186.14.