Optics and Precision Engineering, Volume. 31, Issue 2, 288(2023)

Fine-grained semantic segmentation network for enhancing local salient of laser point clouds

Kun ZHANG... Liting ZHANG, Xiaohong WANG*, Yawei ZHUN and Kunpeng ZHOU |Show fewer author(s)
Author Affiliations
  • College of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang050000, China
  • show less
    References(23)

    [1] [1] 1史健锋, 高治明, 王阿川. 结合ASPP与改进HRNet的多尺度图像语义分割方法研究[J]. 液晶与显示, 2021, 36(11): 1497-1505. doi: 10.37188/CJLCD.2021-0093SHIJ F, GAOZH M, WANGA CH. Multi-scale image semantic segmentation based on ASPP and improved HRNet[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(11): 1497-1505.(in Chinese). doi: 10.37188/CJLCD.2021-0093

    [2] [2] 2陈境焕. 基于深层神经网络的三维点云细粒度分割算法研究[D]. 广州: 广东工业大学, 2020: 22-23. doi: 10.26420/physmedrehabilint.2021.1190CHENJ H. Research on Fine-grained Segmentation Algorithm of 3D Point Cloud Based on Deep Neural Network[D]. Guangzhou: Guangdong University of Technology, 2020: 22-23.(in Chinese). doi: 10.26420/physmedrehabilint.2021.1190

    [4] X Q YE, J M LI, H X HUANG et al. 3D recurrent neural networks with context fusion for point cloud semantic segmentation, 415-430(2018).

    [5] [5] 5伍锡如, 薛其威. 基于激光雷达的无人驾驶系统三维车辆检测[J]. 光学 精密工程, 2022, 30(4): 489-497. doi: 10.37188/OPE.20223004.0489WUX R, XUEQ W. 3D vehicle detection for unmanned driving systerm based on lidar[J]. Opt. Precision Eng., 2022, 30(4): 489-497.(in Chinese). doi: 10.37188/OPE.20223004.0489

    [6] [6] 6沈言善, 王阿川. 基于深度学习的遥感图像地物分割方法[J]. 液晶与显示, 2021, 36(5): 733-740. doi: 10.37188/CJLCD.2020-0294SHENY SH, WANGA CH. Remote sensing image feature segmentation method based on deep learning[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(5): 733-740.(in Chinese). doi: 10.37188/CJLCD.2020-0294

    [7] S BENINI, K KHAN, R LEONARDI et al. FASSEG: a FAce semantic SEGmentation repository for face image analysis. Data in Brief, 24, 103881(2019).

    [8] Y C WU, Y RIVENSON, Y B ZHANG et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery. Optica, 5, 704(2018).

    [9] [9] 9吴庆华, 蔡琼捷思, 黎志昂, 等. 扩展高斯图像聚类的缺失点云配准[J]. 光学 精密工程, 2021, 29(5): 1199-1206. doi: 10.37188/OPE.20212905.1199WUQ H, CAIQ, LIZH A, et al. Registration of losing point cloud based on clustering extended Gaussian image[J]. Opt. Precision Eng., 2021, 29(5): 1199-1206.(in Chinese). doi: 10.37188/OPE.20212905.1199

    [10] [10] 10郭保青, 谢光非. 基于N3D_DIOU的图像与点云融合目标检测算法[J]. 光学 精密工程, 2021, 29(11): 2703-2713. doi: 10.37188/OPE.20212911.2703GUOB Q, XIEG F. Object detection algorithm based on image and point cloud fusion with N3D_DIOU[J]. Opt. Precision Eng., 2021, 29(11): 2703-2713.(in Chinese). doi: 10.37188/OPE.20212911.2703

    [11] H JING, S YOU. Point Cloud Labeling using 3D Convolutional Neural Network(2017).

    [12] L TCHAPMI, C CHOY, I ARMENI et al. SEGCloud: semantic segmentation of 3D point clouds, 537-547(2018).

    [13] J G MAO, Y J XUE, M Z NIU et al. Voxel transformer for 3D object detection, 3144-3153(2022).

    [15] M TATARCHENKO, J PARK, V KOLTUN et al. Tangent convolutions for dense prediction in 3D, 3887-3896(2018).

    [16] B C WU, X Y ZHOU, S C ZHAO et al. SqueezeSegV2: improved model structure and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud, 4376-4382(2019).

    [17] C F XU, B C WU, Z N WANG et al. SqueezeSegV3: Spatially-adaptive Convolution for Efficient Point-cloud Segmentation(2020).

    [18] X WEI, R X YU, J SUN. View-GCN: view-based graph convolutional network for 3D shape analysis, 1847-1856(2020).

    [19] R Q CHARLES, S HAO, K C MO et al. PointNet: deep learning on point sets for 3D classification and segmentation, 77-85(2017).

    [20] X JIANG, X H MA. Dynamic graph CNN with attention module for 3D hand pose estimation. Advances in Neural Networks – ISNN 2019(2019).

    [21] H THOMAS, C R QI, J E DESCHAUD et al. KPConv: flexible and deformable convolution for point clouds, 6410-6419(2019).

    [22] K KAWANO, S KOIDE, C IMAMURA. Seq2seq fingerprint with byte-pair encoding for predicting changes in protein stability upon single point mutation. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 17, 1762-1772(2020).

    [23] S N XIE, S N LIU, Z Y CHEN et al. Attentional ShapeContextNet for point cloud recognition, 4606-4615(2018).

    Tools

    Get Citation

    Copy Citation Text

    Kun ZHANG, Liting ZHANG, Xiaohong WANG, Yawei ZHUN, Kunpeng ZHOU. Fine-grained semantic segmentation network for enhancing local salient of laser point clouds[J]. Optics and Precision Engineering, 2023, 31(2): 288

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Jun. 28, 2022

    Accepted: --

    Published Online: Feb. 9, 2023

    The Author Email: WANG Xiaohong (feifeiwangxiaohong@126.com)

    DOI:10.37188/OPE.20233102.0288

    Topics