Acta Photonica Sinica, Volume. 52, Issue 4, 0430002(2023)

Hyperspectral Image Denoising Based on Fast Tri-factorization and Group Sparsity Regularized

Xiaoyu GAO1... Jingyuan BAI1, Yangzhi HUANG2 and Jifeng NING1,* |Show fewer author(s)
Author Affiliations
  • 1College of Information Engineering, Northwest Agriculture & Forestry University, Yangling712100, China
  • 2College of Science, Northwest Agriculture & Forestry University, Yangling712100, China
  • show less
    Figures & Tables(19)
    Exploring group sparsity in HSI
    Model architecture
    Denoising results on band 65 of Indian Pines dataset in case 5
    Denoising results on band 66 of Washington DC dataset in case 5
    Comparison diagram of PSNR and SSIM values of six models in different bands on the Indian Pines dataset under different noise conditions
    Comparison diagram of PSNR and SSIM values of six models in different bands on the Washington DC dataset under different noise conditions
    Spectrum of Indian Pines dataset at pixel(50,20)in case 6
    Spectrum of Washington DC dataset at pixel(10,180)in case 6
    Denoising results of the 150th band of real data by using different models
    Denoising results of the 162th band of real data by using different models
    Sensitivity analysis of the blocksize
    Sensitivity analysis of the stepsize
    Sensitivity analysis of the C
    Sensitivity analysis of the τ
    Sensitivity analysis of the rank
    Sensitivity analysis of the iteration
    • Table 1. Different noise scenarios

      View table
      View in Article

      Table 1. Different noise scenarios

      Noise

      case

      Gaussian noiseGaussian noiseImpulse noiseDeadlineStripeDeadlineStripe
      (mean 0,variance 0.1)(mean 0,variance 0~0.2 random)(percentage 0~0.2 random)(number 3~10 random)(number 3~10 random)(number 3~10 random)(number 3~10 random)
      All bandsAll bandsAll bands40% bands40% bands20% bands20% bands
      Case1------
      Case2------
      Case3-----
      Case4----
      Case5-----
      Case6---
    • Table 2. Quantitative evaluation results of simulated experiment

      View table
      View in Article

      Table 2. Quantitative evaluation results of simulated experiment

      DatasetNoisecaseLevelIndexnoisyLRMRLRTDTVLLRSSTVLRTDGSLLxRGTVFTFGS
      Indian PinesCase1G=0.1MPSNR20.258 836.689 040.480 038.473 742.837 039.959 645.732 6
      MSSIM0.400 40.947 00.990 00.953 70.996 00.991 60.997 2
      MFSIM0.489 20.945 00.986 00.951 40.994 60.987 30.997 8
      Case2GMPSNR22.805 237.196 342.385 040.274 543.282 741.727 646.684 7
      MSSIM0.478 10.951 10.993 00.960 10.996 80.995 00.996 9
      MFSIM0.557 40.950 90.991 00.966 30.996 80.993 60.997 8
      Case3G+PMPSNR14.623 435.889 040.978 039.726 342.325 840.466 545.501 6
      MSSIM0.261 70.938 00.991 00.961 20.996 10.993 70.996 9
      MFSIM0.435 00.938 00.987 00.962 70.995 70.991 10.997 9
      Case4G+P+DealineMPSNR14.133 435.102 040.324 035.504 240.245 638.969 742.242 7
      MSSIM0.253 60.940 00.989 00.958 10.993 00.991 30.993 5
      MFSIM0.426 90.940 00.986 00.954 50.992 20.988 30.995 0
      Case5G+StripeMPSNR22.009 837.112 242.202 339.940 143.064 841.197 646.859 0
      MSSIM0.469 40.950 50.992 20.953 60.996 60.994 20.997 5
      MFSIM0.551 40.951 10.989 40.960 20.996 60.992 70.998 3
      Case6G+P+Dealine+StripeMPSNR14.343 135.488 140.559 437.132 441.767 239.60443.524 5
      MSSIM0.256 40.940 80.990 00.947 70.995 50.992 40.993 6
      MFSIM0.429 50.941 10.986 40.950 60.994 50.989 30.995 3

      Washington

      DC

      Case1G=0.1MPSNR20.851 534.292 034.450 836.776 236.513 135.179 037.385 0
      MSSIM0.365 90.912 30.924 90.948 00.948 50.934 30.953 5
      MFSIM0.692 90.956 60.952 60.969 80.969 30.958 20.972 3
      Case2GMPSNR23.522 735.013 235.937 838.553 437.772 436.633 238.637 8
      MSSIM0.465 20.914 40.943 50.961 30.962 40.951 20.967 2
      MFSIM0.729 50.957 70.966 10.976 90.977 60.967 70.979 1
      Case3G+PMPSNR14.249 733.865 835.277 636.242 937.123 735.752 837.885 3
      MSSIM0.194 40.896 00.942 30.951 30.957 50.942 90.961 1
      MFSIM0.564 60.949 10.965 10.968 30.975 30.963 00.975 4
      Case4G+P+DealineMPSNR14.181 033.428 135.432 136.334 436.156 035.678 337.017 6
      MSSIM0.192 60.888 30.945 00.951 50.951 70.943 30.958 4
      MFSIM0.562 60.944 20.967 00.969 80.971 50.964 50.971 6
      Case5G+StripeMPSNR23.101 434.858 635.889 037.837 137.714 536.501 838.551 3
      MSSIM0.458 60.913 40.949 50.943 10.961 80.950 10.966 2
      MFSIM0.724 50.957 00.969 40.966 50.977 30.966 90.978 8
      Case6G+P+Dealine+StripeMPSNR14.227 033.706 535.217 636.251 236.222 635.861 737.413 2
      MSSIM0.192 90.894 70.941 70.930 40.952 50.945 20.960 2
      MFSIM0.562 90.947 70.964 60.958 60.971 80.965 40.973 7
    • Table 3. Running time in simulation experiment

      View table
      View in Article

      Table 3. Running time in simulation experiment

      DatasetNoise CaseRunning time/sImprovement/%
      LRMRLRTDTVLRTDGSLLxRGTVLLRSSTVFTFGS
      Indian PinesCase183.1185.8877.54198.68186.2480.4656.80
      Case284.1985.6079.14242.13215.9881.0362.48
      Case384.8193.6783.10199.84220.2880.9463.26
      Case484.3294.0480.67245.23185.6681.3956.16
      Case5103.1685.5078.89237.08247.9880.8467.40
      Case684.0087.2979.95199.91169.4581.5851.86
      Washington DCCase1245.01217.27176.39609.38464.68226.0951.34
      Case2233.31218.65179.92606.24395.82226.7442.72
      Case3174.51218.49179.86605.45407.70228.1944.03
      Case4174.46220.95182.89599.88376.45235.8537.35
      Case5260.70223.36183.40601.73364.53227.3437.63
      Case6254.41221.96177.19610.79403.63229.2143.21
    Tools

    Get Citation

    Copy Citation Text

    Xiaoyu GAO, Jingyuan BAI, Yangzhi HUANG, Jifeng NING. Hyperspectral Image Denoising Based on Fast Tri-factorization and Group Sparsity Regularized[J]. Acta Photonica Sinica, 2023, 52(4): 0430002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 9, 2022

    Accepted: Jan. 3, 2023

    Published Online: Jun. 21, 2023

    The Author Email: NING Jifeng (njf@nwafu.edu.cn)

    DOI:10.3788/gzxb20235204.0430002

    Topics