Acta Optica Sinica, Volume. 40, Issue 4, 401001(2020)

Number Simulation for Laser Occultation Measurement of Atmospheric Vapor Mixing Ratio

Hong Guanglie1、*, Li Hu1,2, Wang Yinan3, Li Jiatang1,2, and Chen Shaojie1,2
Author Affiliations
  • 1Key Laboratory of Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Key Laboratory of Middle Atmosphere and Global Environment Observation, Beijing 100029, China
  • show less
    Figures & Tables(9)
    Geometry of laser occultation limb sounding
    Absorption and transmittance spectra. (a)Absorption spectrum of water vapor in the NIR region near 935 nm(Selected detection wavelength is not sensitive to temperature); (b) atmospheric transmittance spectrum from a 13 km altitude showing the oxygen A-band absorption line at 764.7 nm using a standard US atmosphere(Selected detection wavelength is not sensitive to temperature)
    Flow chart for retrieval atmospheric temperature and pressure from 0.765 μm laser occultation
    Flow chart for water vapor retrieval concentration from 935nm laser occultation
    Simulated laser occultation crosslink water vapor retrieval error
    Simulated laser occultation crosslink temperature retrieval error
    Water vapor profiles: model and retrieved results
    Temperature profiles: model and retrieved results
    • Table 1. Parameters of the laser occultation model

      View table

      Table 1. Parameters of the laser occultation model

      ParameterValueIntroduction
      Emission wavelength0.765 μm(764.688 nm/764.918 nm), 0.935 μm(935.607 nm/935.390 nm)Double wavelength pairs of online and offline
      Emission spectrumLinewidth Δf/f0<3×10-8; spectral purity>36 dB
      Laser pulse power1.5 WDFB semiconductor laser+semiconductor optical amplifier
      Laser pulse time width1.5 msAcoustic-optic chopper
      Laser pulse repetition rate50 Hz
      Laser divergence angle~3.0 mrad
      Reception telescopeΦ36 cmCassegrain
      Field of view~1.0 mrad
      Detector noise equivalent power8×10-13 W per 2 ms2 ms observation time for a pulse
      Detector dynamic rangeNEP~2×10-9 per 2 ms
      Orbital altitude400 kmLow-earth-orbit
      Note:DFB represents distributed feedback; NEP represents noise equivalent power.
    Tools

    Get Citation

    Copy Citation Text

    Hong Guanglie, Li Hu, Wang Yinan, Li Jiatang, Chen Shaojie. Number Simulation for Laser Occultation Measurement of Atmospheric Vapor Mixing Ratio[J]. Acta Optica Sinica, 2020, 40(4): 401001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Sep. 17, 2019

    Accepted: --

    Published Online: Feb. 11, 2020

    The Author Email: Guanglie Hong (glhong@mail.sitp.ac.cn)

    DOI:10.3788/AOS202040.0401001

    Topics