International Journal of Extreme Manufacturing, Volume. 6, Issue 6, 65502(2024)

A fully integrated electronic fabric-enabled multimodal flexible sensors for real-time wireless pressure-humidity-temperature monitoring

Zhao Yunlong, Yuan Yangbo, Zhang Haiyan, Chen Zijian, Zhao Haitao, Wu Guirong, Zheng Weihao, Xue Chenyang, Yin Zongyou, and Gao Libo
References(48)

[1] [1] Chen C R, Ding S C and Wang J 2023 Digital health for aging populations Nat. Med.29 1623–30

[2] [2] Chen G R, Fang Y S, Zhao X, Tat T and Chen J 2021 Textiles for learning tactile interactions Nat. Electron.4 175–6

[3] [3] Fang Y S, Chen G R, Bick M and Chen J 2021 Smart textiles for personalized thermoregulation Chem. Soc. Rev.50 9357–74

[4] [4] Chen G R, Xiao X, Zhao X, Tat T, Bick M and Chen J 2021 Electronic textiles for wearable point-of-care systems Chem. Rev.122 3259–91

[5] [5] Moses O A et al 2021 2D materials inks toward smart flexible electronics Mater. Today50 116–48

[6] [6] Yang Y R et al 2020 A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat Nat. Biotechnol.38 217–24

[7] [7] Yeon H et al 2021 Long-term reliable physical health monitoring by sweat pore–inspired perforated electronic skins Sci. Adv.7 eabg8459

[8] [8] Nyein H Y Y et al 2019 Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat Sci. Adv.5 eaaw9906

[9] [9] Xiao Y, Duan Y, Li N, Wu L L, Meng B, Tan F H, Lou Y, Wang H, Zhang W G and Peng Z C 2021 Multilayer double-sided microstructured flexible iontronic pressure sensor with a record-wide linear working range ACS Sens.6 1785–95

[10] [10] Yu X E et al 2019 Skin-integrated wireless haptic interfaces for virtual and augmented reality Nature575 473–9

[11] [11] Yamamoto Y, Harada S, Yamamoto D, Honda W, Arie T, Akita S and Takei K 2016 Printed multifunctional flexible device with an integrated motion sensor for health care monitoring Sci. Adv.2 e1601473

[12] [12] Bai N N et al 2020 Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity Nat. Commun.11 209

[13] [13] Hong Y, Wang B, Lin W K, Jin L H, Liu S Y, Luo X W, Pan J, Wang W P and Yang Z B 2021 Highly anisotropic and flexible piezoceramic kirigami for preventing joint disorders Sci. Adv.7 eabf0795

[14] [14] Sokolov A N, Roberts M E and Bao Z N 2009 Fabrication of low-cost electronic biosensors Mater. Today12 12–20

[15] [15] Zhao H T et al 2023 A robotic platform for the synthesis of colloidal nanocrystals Nat. Synth.2 505–14

[16] [16] Chao M Y, He L Z, Gong M, Li N, Li X B, Peng L F, Shi F, Zhang L Q and Wan P B 2021 Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents ACS Nano15 9746–58

[17] [17] Kwon D, Lee T I, Shim J, Ryu S, Kim M S, Kim S, Kim T S and Park I 2016 Highly sensitive, flexible, and wearable pressure sensor based on a giant piezocapacitive effect of three-dimensional microporous elastomeric dielectric layer ACS Appl. Mater. Interfaces8 16922–31

[18] [18] Luo Y S, Chen X L, Tian H M, Li X M, Lu Y T Y, Liu Y and Shao J Y 2022 Gecko-inspired slant hierarchical microstructure-based ultrasensitive iontronic pressure sensor for intelligent interaction Research2022 9852138

[19] [19] Gao L B, Wang M W, Wang W D, Xu H C, Wang Y J, Zhao H T, Cao K, Xu D D and Li L 2021 Highly sensitive pseudocapacitive iontronic pressure sensor with broad sensing range Nano-Micro Lett.13 140

[20] [20] Xu H C et al 2021 Stretchable and anti-impact iontronic pressure sensor with an ultrabroad linear range for biophysical monitoring and deep learning-aided knee rehabilitation Microsyst. Nanoeng.7 92

[21] [21] Xu H C et al 2022 Flexible gas-permeable and resilient bowtie antenna for tensile strain and temperature sensing IEEE Int. Things J.9 23215–23

[22] [22] Liu Q X et al 2020 Highly transparent and flexible iontronic pressure sensors based on an opaque to transparent transition Adv. Sci.7 2000348

[23] [23] Zheng W H, Zhao Y L, Xu H C, Yuan Y B, Wang W D and Gao L B 2023 Stretchable iontronic pressure sensor array with low crosstalk and high sensitivity for epidermal monitoring IEEE Electron Device Lett.44 516–9

[24] [24] Liu Y C et al 2023 Skin-interfaced superhydrophobic insensible sweat sensors for evaluating body thermoregulation and skin barrier functions ACS Nano17 5588–99

[25] [25] Chen C X, Jiang M J, Luo X L, Tai H L, Jiang Y D, Yang M, Xie G Z and Su Y J 2022 Ni-Co-P hollow nanobricks enabled humidity sensor for respiratory analysis and human-machine interfacing Sens. Actuators B 370 132441

[26] [26] Lu Y Y, Fujita Y, Honda S, Yang S H, Xuan Y, Xu K C, Arie T, Akita S and Takei K 2021 Wireless and flexible skin moisture and temperature sensor sheets toward the study of thermoregulator center Adv. Healthcare Mater.10 2100103

[27] [27] Xu K C, Lu Y Y, Yamaguchi T, Arie T, Akita S and Takei K 2019 Highly precise multifunctional thermal management-based flexible sensing sheets ACS Nano13 14348–56

[28] [28] Liu Z J et al 2021 A thin-film temperature sensor based on a flexible electrode and substrate Microsyst. Nanoeng.7 42

[29] [29] Huang X et al 2014 Materials and designs for wireless epidermal sensors of hydration and strain Adv. Funct. Mater.24 3846–54

[30] [30] Xu R X, He P S, Lan G C, Behrouzi K, Peng Y D, Wang D K, Jiang T, Lee A, Long Y and Lin L W 2021 Facile fabrication of multilayer stretchable electronics via a two-mode mechanical cutting process ACS Nano16 1533–46

[31] [31] Jeong J W, Kim M K, Cheng H, Yeo W H, Huang X, Liu Y H, Zhang Y H, Huang Y G and Rogers J A 2014 Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements Adv. Healthcare Mater.3 642–8

[32] [32] Kim J et al 2015 Epidermal electronics with advanced capabilities in near-field communication Small11 906–12

[33] [33] Gao W et al 2016 Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis Nature529 509–14

[34] [34] Sempionatto J R et al 2021 An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers Nat. Biomed. Eng.5 737–48

[35] [35] Oh Y S et al 2021 Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries Nat. Commun.12 5008

[36] [36] Yuan T K, Yin R L, Li C W, Wang C, Fan Z and Pan L J 2023 Fully inkjet-printed dual-mode sensor for simultaneous pressure and temperature sensing with high decoupling Chem. Eng. J.473 145475

[37] [37] Lin M Y et al 2024 A fully integrated wearable ultrasound system to monitor deep tissues in moving subjects Nat. Biotechnol.42 448–57

[38] [38] Xu H C et al 2023 A fully integrated, standalone stretchable device platform with in-sensor adaptive machine learning for rehabilitation Nat. Commun.14 7769

[39] [39] Liu H, Li Q M, Bu Y B, Zhang N, Wang C F, Pan C F, Mi L W, Guo Z H, Liu C T and Shen C Y 2019 Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor Nano Energy66 104143

[40] [40] Zhang S M, Meng L, Hu Y, Yuan Z H, Li J H and Liu H 2024 Green synthesis and biosafety assessment of MXene Small20 2308600

[41] [41] Muckley E S et al 2017 Multimodality of structural, electrical, and gravimetric responses of intercalated MXenes to water ACS Nano11 11118–26

[42] [42] Zhu P H, Kuang Y D, Wei Y, Li F, Ou H J, Jiang F and Chen G 2021 Electrostatic self-assembly enabled flexible paper-based humidity sensor with high sensitivity and superior durability Chem. Eng. J.404 127105

[43] [43] Duan Z H, Jiang Y D, Yan M G, Wang S, Yuan Z, Zhao Q N, Sun P, Xie G Z, Du X S and Tai H L 2019 Facile, flexible, cost-saving, and environment-friendly paper-based humidity sensor for multifunctional applications ACS Appl. Mater. Interfaces11 21840–9

[44] [44] Zhu P H, Liu Y, Fang Z Q, Kuang Y D, Zhang Y Z, Peng C X and Chen G 2019 Flexible and highly sensitive humidity sensor based on cellulose nanofibe rs and carbon nanotube composite film Langmuir35 4834–42

[45] [45] Guan X, Hou Z N, Wu K, Zhao H R, Liu S, Fei T and Zhang T 2021 Flexible humidity sensor based on modified cellulose paper Sens. Actuators B 339 129879

[46] [46] Zhang X Z, Maddipatla D, Bose A K, Hajian S, Narakathu B B, Williams J D, Mitchell M F and Atashbar M Z 2020 Printed carbon nanotubes-based flexible resistive humidity sensor IEEE Sens. J.20 12592–601

[47] [47] Cho S, Kim G, Lee S, Park J and Shim W 2017 Molecular-printed thermochromic with fast color switching Adv. Opt. Mater.5 1700627

[48] [48] Choe A, Yeom J, Shanker R, Kim M P, Kang S and Ko H 2018 Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film NPG Asia Mater.10 912–22

Tools

Get Citation

Copy Citation Text

Zhao Yunlong, Yuan Yangbo, Zhang Haiyan, Chen Zijian, Zhao Haitao, Wu Guirong, Zheng Weihao, Xue Chenyang, Yin Zongyou, Gao Libo. A fully integrated electronic fabric-enabled multimodal flexible sensors for real-time wireless pressure-humidity-temperature monitoring[J]. International Journal of Extreme Manufacturing, 2024, 6(6): 65502

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Mar. 31, 2024

Accepted: Feb. 13, 2025

Published Online: Feb. 13, 2025

The Author Email:

DOI:10.1088/2631-7990/ad6aad

Topics