Journal of the Chinese Ceramic Society, Volume. 51, Issue 11, 3005(2023)

Research Progress on Silicon-Terminated Diamond Semiconductors and Field-Effect Transistor Devices

LIU Jinlong... ZHAO Zichen, ZHAO Shangman, ZHU Xiaohua1, WANG Peng, GUO Jinrui, GUO Mingming, WEI Junjun, CHEN Liangxian, LI Jianlin and LI Chengming |Show fewer author(s)
References(58)

[1] [1] BADER S J, LEE H, CHAUDHURI R, et al. Prospects for wide bandgap and ultrawide bandgap CMOS devices[J]. IEEE Trans Electron Devices, 2020, 67(10): 4010-4020.

[6] [6] KUDRYAVTSEV O S, BAGRAMOV R H, SATANIN A M, et al. Fano-type effect in hydrogen-terminated pure nanodiamond[J]. Nano Lett, 2022, 22(7): 2589-2594.

[7] [7] YU C, ZHOU C J, GUO J C, et al. Transport properties of the two-dimensional hole gas for H-terminated diamond with an Al2O3 passivation layer[J]. Crystals, 2022, 12(3): 390.

[8] [8] ZHANG M H, LIN F, WANG W, et al. HfAlOx/Al2O3 bilayer dielectrics for a field effect transistor on a hydrogen-terminated diamond[J]. Materials, 2022, 15(2): 446.

[9] [9] XING K J, AUKARASEREENONT P, RUBANOV S, et al. Hydrogen-terminated diamond MOSFETs using ultrathin glassy Ga2O3 dielectric formed by low-temperature liquid metal printing method[J]. ACS Appl Electron Mater, 2022, 4(5): 2272-2280.

[10] [10] NEBEL C E. CVD diamond: a review on options and reality[J]. Funct Diam, 2023, 3(1): 1-10.

[13] [13] SASAMA Y, KAGEURA T, IMURA M, et al. High-mobility p-channel wide-bandgap transistors based on hydrogen-terminated diamond/hexagonal boron nitride heterostructures[J]. Nat Electron, 2022, 5(1): 37-44.

[14] [14] DRICHE K, UMEZAWA H, ROUGER N, et al. Characterization of breakdown behavior of diamond Schottky barrier diodes using impact ionization coefficients[J]. Jpn J Appl Phys, 2017, 56(4S): 04CR12.

[15] [15] HE S, WANG Y F, CHEN G Q, et al. Normally-off hydrogen-terminated diamond field-effect transistor with SnOx dielectric layer formed by thermal oxidation of Sn[J]. Materials, 2022, 15(14): 5082.

[16] [16] CHANG C D, CHEN G Q, SHAO G Q, et al. Normally-off hydrogen-terminated diamond field effect transistor with a bilayer dielectric of Er2O3/Al2O3[J]. Diam Relat Mater, 2022, 123: 108848.

[17] [17] BI T, NIU J X, OI N, et al. Application of 2DHG diamond p-FET in cascode with normally-OFF operation and a breakdown voltage of over 1.7 kV[J]. IEEE Trans Electron Devices, 2020, 67(10): 4006-4009.

[19] [19] KAWARADA H, AOKI M, ITO M. Enhancement mode metal-semiconductor field effect transistors using homoepitaxial diamonds[J]. Appl Phys Lett, 1994, 65(12): 1563-1565.

[20] [20] LIU J, OHSATO H, DA B, et al. Investigation of Ohmic Contact Resistance, Surface Resistance, and Channel Resistance for Hydrogen-Terminated Diamond MOSFETs[J]. IEEE Trans Electron Devices, 2022, 69(3): 1181-1185.

[21] [21] LIU J W, LIAO M Y, IMURA M, et al. Normally-off HfO2-gated diamond field effect transistors[J]. Appl Phys Lett, 2013, 103(9): 092905.

[22] [22] OI N, KUDO T, INABA M, et al. Normally-OFF two-dimensional hole gas diamond MOSFETs through nitrogen-ion implantation[J]. IEEE Electron Device Lett, 2019, 40(6): 933-936.

[23] [23] LIU J W, OHSATO H, LIAO M Y, et al. Logic circuits with hydrogenated diamond field-effect transistors[J]. IEEE Electron Device Lett, 2017, 38(7): 922-925.

[24] [24] YANG Y, KOECK F A, WANG X Y, et al. Surface transfer doping of MoO3 on hydrogen terminated diamond with an Al2O3 interfacial layer[J]. Appl Phys Lett, 2022, 120(19): 120.

[25] [25] ZHANG M H, WANG W, WEN F, et al. Large VTH of normally-OFF field effect transistor with yttrium gate material directly deposited on hydrogen-terminated diamond[J]. IEEE Trans Electron Devices, 2022, 69(7): 3563-3567.

[26] [26] KAWARADA H. Diamond p-FETs using two-dimensional hole gas for high frequency and high voltage complementary circuits[J]. J Phys D: Appl Phys, 2023, 56(5): 053001.

[28] [28] LEY L, RISTEIN J, MEIER F, et al. Surface conductivity of the diamond: a novel transfer doping mechanism[J]. Phys B Condens Matter, 2006, 376-377: 262-267.

[29] [29] KITABAYASHI Y, KUDO T, TSUBOI H, et al. Normally-off C-H diamond MOSFETs with partial C-O channel achieving 2-kV breakdown voltage[J]. IEEE Electron Device Lett, 2017, 38(3): 363-366.

[30] [30] YU X X, ZHOU J J, QI C J, et al. A high frequency hydrogen-terminated diamond MISFET with fT/fmax of 70/80 GHz[J]. IEEE Electron Device Lett, 2018, 39(9): 1373-1376.

[31] [31] UEDA K, KASU M, YAMAUCHI Y, et al. Diamond FET using high-quality polycrystalline diamond with fT of 45 GHz and fmax of 120 GHz[J]. IEEE Electron Device Lett, 2006, 27(7): 570-572.

[32] [32] IMANISHI S, HORIKAWA K, OI N, et al. 3.8 W/mm RF power density for ALD Al2O3-based two-dimensional hole gas diamond MOSFET operating at saturation velocity[J]. IEEE Electron Device Lett, 2018, 40(2): 279-282.

[34] [34] ZHU X H, BI T, YUAN X L, et al. C-Si interface on SiO2/(111) diamond p-MOSFETs with high mobility and excellent normally-off operation[J]. Appl Surf Sci, 2022, 593: 153368.

[36] [36] SCHENK A K, SEAR M J, DONTSCHUK N, et al. Development of a silicon-diamond interface on (111) diamond[J]. Appl Phys Lett, 2020, 116(7): 071602.

[37] [37] TSAI A, AGHAJAMALI A, DONTSCHUK N, et al. Epitaxial formation of SiC on (100) diamond[J]. ACS Appl Electron Mater, 2020, 2(7): 2003-2009.

[38] [38] GEIS M W, GREGORY J A, PATE B B. Capacitance-voltage measurements on metal-SiO2-diamond structures fabricated with (100)-and (111)-oriented substrates[J]. IEEE Trans Electron Devices, 1991, 38(3): 619-626.

[39] [39] EDMONDS M T, WANKE M, TADICH A, et al. Surface transfer doping of hydrogen-terminated diamond by C60F48: Energy level scheme and doping efficiency[J]. J Chem Phys, 2012, 136(12): 011605.

[40] [40] OSLINKER B, HOXLEY D, TADICH A, et al. Surface transfer doping of oxidised silicon-terminated (111) diamond using MoO3[J]. Diam Relat Mater, 2023, 133: 109712.

[41] [41] QIAO P F, LIU K, ZHANG S, et al. Origin of two-dimensional hole gas formation on Si-treated diamond surfaces: surface energy band diagram perspective[J]. Appl Surf Sci, 2022, 584: 152560.

[42] [42] CHAKRAPANI V, ANGUS J C, ANDERSON A B, et al. Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple[J]. Science, 2007, 318(5855): 1424-1430.

[43] [43] SCHENK A, TADICH A, SEAR M, et al. Formation of a silicon terminated (100) diamond surface[J]. Appl Phys Lett, 2015, 106(19): 191603.

[44] [44] GRAUPNER R, MAIER F, RISTEIN J, et al. High-resolution surface-sensitive C1s core-level spectra of clean and hydrogen-terminated diamond (100) and (111) surfaces[J]. Phys Rev B, 1998, 57(19): 12397-12409.

[45] [45] KINSKY J, GRAUPNER R, STAMMLER M, et al. Surface vibrations on clean, deuterated, and hydrogenated single crystal diamond(100) surfaces studied by high-resolution electron energy loss spectroscopy[J]. Diam Relat Mater, 2002, 11(3-6): 365-370.

[46] [46] XUE K, HO H P, XU J B. Local study of thickness-dependent electronic properties of ultrathin silicon oxide near SiO2/Si interface[J]. J Phys D: Appl Phys, 2007, 40(9): 2886-2893.

[47] [47] SORAR G D, D'ANDREA G, GLISENTI A. XPS characterization of gel-derived silicon oxycarbide glasses[J]. Mater Lett, 1996, 27(1-2): 1-5.

[48] [48] BI T, CHANG Y H, FEI W X, et al. C-Si bonded two-dimensional hole gas diamond MOSFET with normally-off operation and wide temperature range stability[J]. Carbon, 2021, 175: 525-533.

[49] [49] SCHENK A K, SEAR M J, TADICH A, et al. Oxidation of the silicon terminated (100) diamond surface[J]. J Phys: Condens Matter, 2017, 29(2): 025003.

[50] [50] SEAR M J, SCHENK A K, TADICH A, et al. P-type surface transfer doping of oxidised silicon terminated (100) diamond[J]. Appl Phys Lett, 2017, 110(1): 011605.

[51] [51] STUTZMANN M, GARRIDO J A, EICKHOFF M, et al. Direct biofunctionalization of semiconductors: a survey[J]. Phys Stat Sol (a), 2006, 203(14): 3424-3437.

[52] [52] SCHENK A K, TADICH A, SEAR M J, et al. The surface electronic structure of silicon terminated (100) diamond[J]. Nanotechnology, 2016, 27(27): 275201.

[53] [53] SOUKIASSIAN P, AMY F. Silicon carbide surface oxidation and SiO2/SiC interface formation investigated by soft X-ray synchrotron radiation[J]. J Electron Spectrosc Relat Phenom, 2005, 144-147: 783-788.

[54] [54] TACHIKI K, KANEKO M, KIMOTO T. Mobility improvement of 4H-SiC (0001) MOSFETs by a three-step process of H2 etching, SiO2 deposition, and interface nitridation[J]. Appl Phys Express, 2021, 14(3): 031001.

[55] [55] FU Y, CHANG Y H, ZHU X H, et al. 300 mA/mm drain current density P-type enhancement-mode oxidized Si-terminated (111) diamond MOSFETs with ALD Al2O3 gate insulator[C]//2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD). Vancouver, BC, Canada. IEEE, 2022: 121-124.

[56] [56] CHEN G Q, WANG W, HE S, et al. Leakage Current reduction of normally off hydrogen-terminated diamond field effect transistor utilizing dual-barrier Schottky gate[J]. J Appl Phys, 2022, 132(1): 015702.

[57] [57] WANG F, CHEN G Q, WANG W, et al. High-threshold-voltage and low-leakage-current of normally-off H-diamond FET with self-aligned Zr/ZrO2 gate[J]. Diam Relat Mater, 2023, 134: 109774.

[58] [58] KUNTUMALLA M K, ZHENG Y S, ATTRASH M, et al. Microwave N2 plasma nitridation of H-diamond (111) surface studied by ex situ XPS, HREELS, UPS, TPD, LEED and DFT[J]. Appl Surf Sci, 2022, 600: 154085.

[59] [59] FUKUSHIMA H, TANAKA M M, UMEZAWA H, et al. Development of differential amplifier circuits based on radiation hardened H-diamond MOSFET (RADDFET)[J]. Diam Relat Mater, 2023, 134: 109758.

[63] [63] KAWAI S, YAMANO H, SONODA T, et al. Nitrogen-terminated diamond surface for nanoscale NMR by shallow nitrogen-vacancy centers[J]. J Phys Chem C, 2019, 123(6): 3594-3604.

[64] [64] CRAWFORD K G, MAINI I, MACDONALD D A, et al. Surface transfer doping of diamond: a review[J]. Prog Surf Sci, 2021, 96(1): 100613.

[65] [65] VERONA C, ARCIPRETE F, FOFFI M, et al. Influence of surface crystal-orientation on transfer doping of V2O5/H-terminated diamond[J]. Appl Phys Lett, 2018, 112(18): 181602.

[67] [67] KITAGOH S, OKADA R, KAWANO A, et al. Cross-sectional TEM study and film thickness dependence of Tc in heavily boron-doped superconducting diamond[J]. Phys C Supercond Appl, 2010, 470: S610-S612.

[68] [68] LAGRANGE J P, DENEUVILLE A, GHEERAERT E. A large range of boron doping with low compensation ratio for homoepitaxial diamond films[J]. Carbon, 1999, 37(5): 807-810.

[70] [70] FEI W X, BI T, IWATAKI M, et al. Publisher’s Note: “Oxidized Si terminated diamond and its MOSFET operation with SiO2 gate insulator”[J]. Appl Phys Lett, 2020, 116(26): 212103.

[71] [71] LIU J W, OOSATO H, LIAO M Y, et al. Enhancement-mode hydrogenated diamond metal-oxide-semiconductor field-effect transistors with Y2O3 oxide insulator grown by electron beam evaporator[J]. Appl Phys Lett, 2017, 110(20): 203502.

Tools

Get Citation

Copy Citation Text

LIU Jinlong, ZHAO Zichen, ZHAO Shangman, ZHU Xiaohua1, WANG Peng, GUO Jinrui, GUO Mingming, WEI Junjun, CHEN Liangxian, LI Jianlin, LI Chengming. Research Progress on Silicon-Terminated Diamond Semiconductors and Field-Effect Transistor Devices[J]. Journal of the Chinese Ceramic Society, 2023, 51(11): 3005

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Received: Jun. 1, 2023

Accepted: --

Published Online: Jan. 18, 2024

The Author Email:

DOI:

CSTR:32186.14.

Topics