Infrared and Laser Engineering, Volume. 50, Issue 10, 20200518(2021)

Classification of coal/rock based on Hyperspectral LiDAR calibration-free signals

Zixin He, Hui Shao*, Hang Guo, and Jie Chen
Author Affiliations
  • School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei 230601, China
  • show less
    References(33)

    [1] Qun Feng, Hong Chen. The safety-level gap between China and the US in view of the interaction between coal production and safety management[J]. Safety Science, 54, 80-86(2013).

    [2] Qi Qingjie, Zhao Xiaoliang, Song Baichao. Pre-evaluation method of coal mine safety based on continental distance model with varying weight[J]. Procedia Earth and Planetary Science, 1, 180-185(2009).

    [3] Song Weihua, Zhang Hongwei. Regional prediction of coal and gas outburst hazard based on multi-factor pattern recognition[J]. Procedia Earth and Planetary Science, 1, 347-353(2009).

    [4] Khatik V M, Nandi A K. A generic method for rock mass classification[J]. Journal of Rock Mechanics and Geotechnical Engineering, 10, 106-120(2018).

    [5] Weidner L, Walton G, Kromer R A. Classification methods for point clouds in rock slope monitoring: A novel machine learning approach and comparative analysis[J]. Engineering Geology, 263, 105326(2019).

    [6] Ryan A K, D Jean H, Lato M J, et al. Identifying rock slope failure precursors using LiDAR for transportation corridor hazard management[J]. Engineering Geology, 195, 93-103(2015).

    [7] Hartzell P, Glennie C, Biber K, et al. Application of multispectral LiDAR to automated virtual outcrop geology[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 88, 147-155(2014).

    [8] Chen Yuwei, Jiang Changhui, Hyyppa Juha, et al. Feasibility study of ore classification using active hyperspectral LiDAR[J]. IEEE Geoscience and Remote Sensing Letters, 15, 1785-1789(2018).

    [9] Liu Bingyi, Zhuang Quanfeng, Qin Shengguang, et al. Aerosol classification method based on high spectral resolution lidar[J]. Infrared and Laser Engineering, 46, 0411001(2017).

    [10] Dong Junfa, Liu Jiqiao, Zhu Xiaolei, et al. Splitting ratio optimization of spaceborne high spectral resolution lidar[J]. Infrared and Laser Engineering, 48, S205001(2019).

    [11] Xu Junjie, Bu Lingbing, Liu Jiqiao, et al. Airborne high-spectral-resolution lidar for atmospheric aerosol detection[J]. Chinese Journal of Lasers, 47, 0710003(2020).

    [12] Morsdorf, Nichol, Malthus, et al. Assessing forest structural and physiological information content of multi-spectral LiDAR waveforms by radiative transfer modelling[J]. Remote Sensing of Environment, 113, 2152-2163(2009).

    [13] Chen Yuwei, Räikkönen E, Kaasalainen S, et al. Two-channel hyperspectral LiDAR with a supercontinuum laser source[J]. Sensors, 10, 7057-7066(2010).

    [14] Sanna K, Anttoni J, Mikko K, et al. Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: search for correction methods[J]. Remote Sensing, 3, 2207-2221(2011).

    [15] Balduzzi M A F, Dimitry V D Z, Stuckens J, et al. The properties of terrestrial laser system intensity for measuring leaf geometries: A case study with conference pear trees (Pyrus Communis)[J]. Sensors, 11, 1657-1681(2011).

    [16] Hoefle B, Pfeifer N. Correction of laser scanning intensity data: Data and model-driven approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 62, 415-433(2007).

    [17] Yan W Y, Shaker A, Habib A, et al. Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 35-44(2012).

    [18] Shao Hui, Chen Yuwei, Yang Zhirong, et al. A 91-channel hyperspectral LiDAR for coal/rock classification[J]. IEEE Geoscience and Remote Sensing Letters, 17, 1052-1056(2020).

    [19] Chen Yuwei, Li Wei, Juha H, et al. A 10-nm spectral resolution hyperspectral LiDAR system based on an acousto-optic tunable filter[J]. Sensors, 19, 1620(2019).

    [20] CoifmanR R, Wickerhauser M V. Entropy-based algorithms for best basis selection[J]. IEEE Transactions on Information Theory, 38, 713-718(1992).

    [21] Diner D J, Xu F, GarayM J, et al. The Airborne Multiangle Spectro Polarimetric Imager (AirMSPI): A new tool for aerosol and cloud remote sensing[J]. Atmospheric Measurement Techniques, 6, 2007-2025(2013).

    [22] Chen Jikai, Li Guoqing. Tsallis wavelet entropy and its application in power signal analysis[J]. Entropy, 16, 3009-3025(2014).

    [23] Hovi A, Korhonen L, Vauhkonen J, et al. LiDAR waveform features for tree species classification and their sensitivity to tree- and acquisition related parameters[J]. Remote Sensing of Environment, 173, 224-237(2016).

    [24] Su Dianpeng, Yang Fanlin, Ma Yue, et al. Classification of coral reefs in the south China sea by combining airborne LiDAR bathymetry bottom waveforms and bathymetric features[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 815-828(2019).

    [25] Gu Zhujun, Cao Sen, Sanchez-Azofeifa G A. Using LiDAR waveform metrics to describe and identify successional stages of tropical dry forests[J]. ITC Journal, 73, 482-492(2018).

    [26] Guo Lei, Chang Weiwei, Fu Chaoyang. Band selection of optimal for hyperspectral image fusion[J]. Journal of Astronautics, 32, 374-379(2011).

    [27] Chan C W, Desiré P. Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery[J]. Remote Sensing of Environment, 112, 2999-3011(2008).

    [28] Ghasemian N, Akhoondzadeh M. Introducing two Random Forest based methods for cloud detection in remote sensing images[J]. Advances in Space Research, 62, 288-303(2018).

    [29] Zhao Chunhui, Gao Bing, Zhang Lejun, et al. Classification of hyperspectral imagery based on spectral gradient, SVM and spatial random forest[J]. Infrared Physics and Technology, 95, 61-69(2018).

    [30] Emma I V, Raúl Z M. An evaluation of guided regularized random forest for classification and regression tasks in remote sensing[J]. International Journal of Applied Earth Observations and Geoinformation, 88, 102051(2020).

    [31] Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in python[J]. Journal of Machine Learning Research, 12, 2825-2830(2011).

    [32] Shao Hui, Chen Yuwei, Li Wei, et al. An investigation of spectral band selection for hyperspectral LiDAR technique[J]. Electronics, 9, 148(2020).

    [33] Yan Shouxun, Zhang Bing, Zhao Yongchao, et al. Summarizing the VIS-NIR spectra of minerals and rocks[J]. Remote Sensing Technology and Application, 18, 191-201(2003).

    CLP Journals

    [1] Hui Shao, Beining Sa, Wei Li, Yuwei Chen, Lu Liu, Jie Chen, Long Sun, Yuxia Hu. A design and implementation of full waveform hyperspectral LiDAR for ancient architecture modelling[J]. Infrared and Laser Engineering, 2022, 51(8): 20210786

    [2] Shilong Xu, Yuhao Xia, Jiajie Dong, Qishu Qian. Lidar point cloud expansion and identification method for masking targets based on time-spectra information[J]. Infrared and Laser Engineering, 2023, 52(6): 20230213

    Tools

    Get Citation

    Copy Citation Text

    Zixin He, Hui Shao, Hang Guo, Jie Chen. Classification of coal/rock based on Hyperspectral LiDAR calibration-free signals[J]. Infrared and Laser Engineering, 2021, 50(10): 20200518

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers & Laser optics

    Received: Dec. 9, 2020

    Accepted: --

    Published Online: Dec. 7, 2021

    The Author Email: Hui Shao (shaohui@ahjzu.edu.cn)

    DOI:10.3788/IRLA20200518

    Topics