Journal of Advanced Dielectrics, Volume. 14, Issue 5, 2350032(2024)
In-bulk polarization reversal in lithium tantalate with single charged domain wall
[1] J. Imbrock, S. Wevering, K. Buse, E. Krätzig. Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses. J. Opt. Soc. Am. B, 16, 1392(1999).
[2] T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, K. Kitamura. Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3. Opt. Lett., 25, 651(2000).
[3] S. Porter. A brief guide to pyroelectric detectors. Ferroelectrics, 33, 193(1981).
[4] L. Li, C. Romero, J. R. V. de Aldana, L. Wang, Y. Tan, F. Chen. Efficient quasi-phase-matching in fan-out PPSLT crystal waveguides by femtosecond laser direct writing. Opt. Express, 27, 36875(2019).
[5] M. Levenius, V. Pasiskevicius, F. Laurell, K. Gallo. Ultra-broadband optical parametric generation in periodically poled stoichiometric LiTaO3. Opt. Express, 19, 4121(2011).
[6] A. A. Surin, T. E. Borisenko, S. V. Larin. Generation of 14 W at 589 nm by frequency doubling of high-power CW linearly polarized Raman fiber laser radiation in MgO: sPPLT crystal. Opt. Lett., 41, 2644(2016).
[7] Y. Cho. Electrical conduction in nanodomains in congruent lithium tantalate single crystal. Appl. Phys. Lett., 104, 042905(2014).
[8] A. Brugère, S. Gidon, B. Gautier. Finite element method simulation of the domain growth kinetics in single-crystal LiTaO3: Role of surface conductivity. J. Appl. Phys., 110, 052016(2011).
[9] R. Barns, J. Carruthers. Lithium tantalate single crystal stoichiometry. J. Appl. Crystallogr., 3, 395(1970).
[10] S. Miyazawa, H. Iwasaki. Congruent melting composition of lithium metatantalate. J. Cryst. Growth, 10, 276(1971).
[11] L. Tian, V. Gopalan, L. Galambos. Domain reversal in stoichiometric LiTaO3 prepared by vapor transport equilibration. Appl. Phys. Lett., 85, 4445(2004).
[12] M. Katz, R. Route, D. Hum, K. Parameswaran, G. Miller, M. Fejer. Vapor-transport equilibrated near-stoichiometric lithium tantalate for frequency-conversion applications. Opt. Lett., 29, 1775(2004).
[13] V. Gopalan, T. Mitchell, Y. Furukawa, K. Kitamura. The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals. Appl. Phys. Lett., 72, 1981(1998).
[14] R. Holman, P. Cressman, J. Revelli. Chemical control of optical damage in lithium niobate. Appl. Phys. Lett., 32, 280(1978).
[15] K. V. Bhupathiraju, A. D. Seymour, F. Ganikhanov. Femtosecond optical parametric oscillator based on periodically poled stoichiometric LiTaO3 crystal. Opt. Lett., 34, 2093(2009).
[16] P. F. Bordui, R. G. Norwood, C. D. Bird, J. T. Carella. Stoichiometry issues in single-crystal lithium tantalate. J. Appl. Phys., 78, 4647(1995).
[17] D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, M. M. Fejer. Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion. J. Appl. Phys., 101, 093108(2007).
[18] V. I. Pryakhina, E. D. Greshnyakov, B. I. Lisjikh, M. S. Nebogatikov, V. Ya Shur. Influence of composition gradients on heat induced initial domain structure in lithium tantalate. Ferroelectrics, 542, 13(2019).
[19] E. D. Greshnyakov, V. I. Pryakhina, B. I. Lisjikh, A. D. Ushakov, M. S. Nebogatikov, V. Ya. Shur. Shape of charged domain walls in bidomain lithium tantalate plates with composition gradients. Ferroelectrics, 592, 26(2022).
[20] V. Ya. Shur, E. V. Nikolaeva, E. I. Shishkin, V. L. Kozhevnikov, A. P. Chernykh, K. Terabe, K. Kitamura. Polarization reversal in congruent and stoichiometric lithium tantalate. Appl. Phys. Lett., 79, 3146(2001).
[21] V. Gopalan, T. E. Mitchell. In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy. J. Appl. Phys., 85, 2304(1999).
[22] V. Gopalan, S. S. A. Gerstl, A. Itagi, T. E. Mitchell, Q. X. Jia, T. E. Schlesinger, D. D. Stancil. Mobility of 180° domain walls in LiTaO3 congruent measured using real-time electro-optic imaging microscopy. J. Appl. Phys., 86, 1638(1999).
[23] D. Lee, H. Xu, V. Dierolf, V. Gopalan, S. R. Phillpot. Shape of ferroelectric domains in LiNbO3 and LiTaO3 from defect/domain-wall interactions. Appl. Phys. Lett., 98, 092903(2011).
[24] V. Ya. Shur, E. V. Nikolaeva, E. I. Shishkin, V. L. Kozhevnikov, A. P. Chernykh. Kinetics of domain structure and switching currents in single crystals of congruent and stoichiometric lithium tantalate. Phys. Solid State, 44, 2151(2002).
[25] Shi, Y. Kong, W. Yan, H. Liu, X. Li, X. Xie, D. Zhao, L. Sun, J. Xu, J. Sun, S. Chen, L. Zhang, Z. Huang, S. Liu, W. Zhang, G. Zhang. The composition dependence and new assignment of the Raman spectrum in lithium tantalate. Solid State Commun., 135, 251(2005).
[26] S. M. Kostritskii, M. Aillerie, P. Bourson, D. Kip. Raman spectroscopy study of compositional inhomogeneity in lithium tantalate crystals. Appl. Phys. B, 95, 125(2009).
[27] E. Soergel. Visualization of ferroelectric domains in bulk single crystals. App. Phys. B., 81, 729(2005).
[28] Y. Sheng, A. Best, H. Butt, W. Krolikowski, A. Arie, K. Koynov. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation. Opt. Express, 18, 16539(2010).
[29] T. Kämpfe, P. Reichenbach, M. Schröder, A. Haußmann, L. M. Eng, T. Woike, E. Soergel. Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation. Phys. Rev. B, 89, 035314(2014).
[30] V. Ya. Shur, E. A. Mingaliev, V. A. Lebedev, D. K. Kuznetsov, D. V. Fursov. Polarization reversal induced by heating-cooling cycles in MgO doped lithium niobate crystals. J. Appl. Phys., 113, 187211(2013).
[31] V. Ya. Shur, A. A. Esin, M. A. Alam, A. R. Akhmatkhanov. Superfast domain walls in KTP single crystals. Appl. Phys. Lett., 111, 152907(2017).
[32] V. Shur, E. Rumyantsev, S. Makarov. Kinetics of phase transformations in real finite systems: Application to switching in ferroelectrics. J. Appl. Phys., 84, 445(1998).
[33] X. Liu, K. Kitamura, K. Terabe. Thermal stability of LiTaO3 domains engineered by scanning force microscopy. Appl. Phys. Lett., 89, 142906(2006).
[34] J. Gonnissen, D. Batuk, G. F. Nataf, L. Jones, A. M. Abakumov, S. V. Aert, D. Schryvers, E. K. H. Salje. Direct observation of ferroelectric domain walls in LiNbO3: Wall-meanders, kinks and local electric charges. Adv. Funct. Mater., 26, 7599(2016).
[35] M. Y. Gureev, P. Mokrý, A. K. Tagantsev, N. Setter. Ferroelectric charged domain walls in an applied electric field. Phys. Rev. B, 86, 104104(2012).
[36] I. Baturin, A. Akhmatkhanov, V. Shur, M. Nebogatikov, M. Dolbilov, E. Rodina. Characterization of bulk screening in single crystals of lithium niobate and lithium tantalate family. Ferroelectrics, 374, 1(2008).
[37] A. A. Esin, A. R. Akhmatkhanov, V. Y. Shur. Tilt control of the charged domain walls in lithium niobate. Appl. Phys. Lett., 114, 092901(2019).
[38] V. Ya. Shur, E. A. Mingaliev, M. S. Kosobokov, M. S. Nebogatikov, A. I. Lobov, A. V. Makaev. Self-assembled shape evolution of the domain wall and formation of nanodomain wall traces induced by multiple IR laser pulse irradiation in lithium niobate. J. Appl. Phys., 127, 094103(2020).
[39] A. R. Udalov, V. Ya. Shur, U. A. Alekseeva. Shape instability of the moving wavy domain wall in uniaxial ferroelectric. Ferroelectrics, 525, 123(2018).
[40] V. Ya. Shur, A. R. Akhmatkhanov, M. A. Chuvakova, M. A. Dolbilov, P. S. Zelenovskiy, A. I. Lobov. Formation of self-organized domain structures with charged domain walls in lithium niobate with surface layer modified by proton exchange. J. Appl. Phys., 121, 104101(2017).
[41] A. R. Akhmatkhanov, M. A. Chuvakova, I. A. Kipenko, N. A. Dolgushin, D. B. Kolker, V. N. Vedenyapin, L. I. Isaenko, V. Ya. Shur. Abnormal kinetics of domain structure in KTA single crystals. Appl. Phys. Lett., 115, 212901(2019).
[42] M. A. Chuvakova, A. R. Akhmatkhanov, E. M. Vaskina, L. V. Gimadeeva, E. D. Greshnyakov, V. Ya. Shur. Formation of submicron stripe domain ensembles during polarization reversal in Rb doped KTP crystal covered by dielectric layer. Ferroelectrics, 574, 101(2021).
[43] V. Gopalan, V. Dierolf, D. A. Scrymgeour. Defect-domain wall interactions in trigonal ferroelectrics. Annu. Rev. Mater. Res., 37, 449(2007).
[44] P. Reichenbach, T. Kämpfe, A. Haußmann, A. Thiessen, T. Woike, R. Steudtner, L. Kocsor, Z. Szaller, L. Kovács, L. Eng. Polaron-mediated luminescence in lithium niobate and lithium tantalate and its domain contrast. Crystals, 8, 214(2018).
[45] V. Ya. Shur, M. S. Kosobokov, A. V. Makaev, D. K. Kuznetsov, M. S. Nebogatikov, D. S. Chezganov, E. A. Mingaliev. Dimensionality increase of ferroelectric domain shape by pulse laser irradiation. Acta Mater., 219, 117270(2021).
Get Citation
Copy Citation Text
Evgeny Greshnyakov, Maria Chuvakova, Andrei Ushakov, Andrey Akhmatkhanov, Mikhail Kosobokov, Victoria Pryakhina, Vladimir Shur. In-bulk polarization reversal in lithium tantalate with single charged domain wall[J]. Journal of Advanced Dielectrics, 2024, 14(5): 2350032
Category: Research Articles
Received: Nov. 20, 2023
Accepted: Dec. 18, 2023
Published Online: Jan. 2, 2025
The Author Email: Shur Vladimir (vladimir.shur@urfu.ru)