Laser & Optoelectronics Progress, Volume. 60, Issue 9, 0916002(2023)

Influence of Combination and Distribution of RGO/Fe3O4/PLA Composite Absorber on Absorption Performance of Pyramid

Haihua Wu1、*, Renjing Zhang1, Zenghui Yang1, Tiandong Cao2, Kaixin Deng1, and Yan Li1
Author Affiliations
  • 1Hubei Engineering Research Center for Graphite Additive Manufacturing Technology and Equipment, China Three Gorges University, Yichang 443002, Hubei , China
  • 2School of Machinery and Power, China Three Gorges University, Yichang 443002, Hubei , China
  • show less
    References(34)

    [1] Zeng Z H, Wu T T, Han D X et al. Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding[J]. ACS Nano, 14, 2927-2938(2020).

    [2] Chang Y K, Mu C P, Yang B C et al. Microwave absorbing properties of two dimensional materials GeP5 enhanced after annealing treatment[J]. Applied Physics Letters, 114, 013103(2019).

    [3] Zhang K L, Zhang J Y, Hou Z L et al. Multifunctional broadband microwave absorption of flexible graphene composites[J]. Carbon, 141, 608-617(2019).

    [4] Liu P B, Zhang Y Q, Yan J et al. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption[J]. Chemical Engineering Journal, 368, 285-298(2019).

    [5] Cheng Y, Li Z Y, Li Y et al. Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption[J]. Carbon, 127, 643-652(2018).

    [6] Wang P, Cheng L F, Zhang L T. One-dimensional carbon/SiC nanocomposites with tunable dielectric and broadband electromagnetic wave absorption properties[J]. Carbon, 125, 207-220(2017).

    [7] Xie A M, Wu F, Jiang W C et al. Chiral induced synthesis of helical polypyrrole (PPy) nano-structures: a lightweight and high-performance material against electromagnetic pollution[J]. Journal of Materials Chemistry C, 5, 2175-2181(2017).

    [8] Xu W, Pan Y F, Wei W et al. Nanocomposites of oriented nickel chains with tunable magnetic properties for high-performance broadband microwave absorption[J]. ACS Applied Nano Materials, 1, 1116-1123(2018).

    [9] Wang G S, Deng Y, Xiang Y et al. Fabrication of radial ZnO nanowire clusters and radial ZnO/PVDF composites with enhanced dielectric properties[J]. Advanced Functional Materials, 18, 2584-2592(2008).

    [10] Luo J H, Zhang K, Cheng M L et al. MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption[J]. Chemical Engineering Journal, 380, 122625(2020).

    [11] Lü H L, Zhang H Q, Ji G B et al. Interface strategy to achieve tunable high frequency attenuation[J]. ACS Applied Materials & Interfaces, 8, 6529-6538(2016).

    [12] Liu J W, Che R C, Chen H J et al. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells[J]. Small, 8, 1214-1221(2012).

    [13] Liu P B, Gao S, Wang Y et al. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials[J]. Chemical Engineering Journal, 381, 122653(2020).

    [14] Xing L. Preparation of graphene 3D printed composite wire and study on its absorbing properties[D](2020).

    [15] Liu S S, Li Q, Yang Z Y et al. Nonlinear modulation of electromagnetically induced transparency based on graphene-metal hybrid metamaterial structure[J]. Chinese Journal of Lasers, 48, 1918006(2021).

    [16] Ye X C, Ouyang B, Yang C et al. Preparation of graphene-carbonyl iron powder wire and analysis of its wave absorption performance[J]. Acta Materiae Compositae Sinica, 39, 3292-3302(2022).

    [17] Li L, Xi R, Liu H X et al. Broadband polarization-independent and low-profile optically transparent metamaterial absorber[J]. Applied Physics Express, 11, 052001(2018).

    [18] Xiao H D, Qu Z P, Lü M Y et al. Optically transparent broadband and polarization insensitive microwave metamaterial absorber[J]. Journal of Applied Physics, 126, 135107(2019).

    [19] Yin Z P, Lu Y J, Gao S et al. Optically transparent and single-band metamaterial absorber based on indium-tin-oxide[J]. International Journal of RF and Microwave Computer-Aided Engineering, 29, e21536(2019).

    [20] Yu B Y, Zhao Y J, Chen J Q et al. Broadband transparent metamaterial absorber in wireless communication band based on indium tin oxide film[J]. International Journal of RF and Microwave Computer-Aided Engineering, 29, e21955(2019).

    [21] Li B, Li R L, Ji Z J et al. Electromagnetic wave absorbing properties of carbon black/cement-based materials with pyramidal structures[J]. New Building Materials, 47, 1-5, 18(2020).

    [22] Hu R Z, Wang J Y, Wu Q N. A metamaterial terahertz multi-frequency absorber based on square symmetry[J]. Laser & Optoelectronics Progress, 59, 0516001(2022).

    [23] Li S M, Wu S B, Wang J F et al. Novel honeycomb sandwich structure wave-absorbing composites with metamaterials[J]. Journal of Aeronautical Materials, 39, 94-99(2019).

    [24] Chi B H, Wu Y M, Hong Y et al. Design and fabrication of multilayer wideband metamaterial absorbers with micro droplets jetting printing[J]. Electronic Components and Materials, 39, 47-51(2020).

    [25] Chi B H. Forming mechanism and experimental study of polymer melt differential 3D printing[D](2016).

    [26] Xiong Y J, Wang Y, Wang Q et al. Structural broadband absorbing metamaterial based on three-dimensional printing technology[J]. Acta Physica Sinica, 67, 084202(2018).

    [27] Zhang Z, Song B, Wang X B et al. Research status and trend of design and addictive manufacturing for mechanical metamaterials with energy absorption[J]. Chinese Journal of Lasers, 49, 1402301(2022).

    [28] Lü S P, Liu S H. Design and analyze of the figure of pyramid absorber used in microwave Chambers[J]. Materials Science and Technology, 15, 572-574, 578(2007).

    [29] Zhou C H. Synthesis and electromagnetic wave absorbing performance of magnetic metal/dielectric composites[D](2019).

    [30] Wu Z C. Microstructure design of microwave absorption materials[D](2018).

    [31] Guo X Q. Structure regulation and microwave absorption mechanism of graphene loaded magnetic nanoparticles[D](2016).

    [32] Xu Z Y, Li W, Ma G Q et al. Design of broadband absorbers by multiple layers containing absorbents with different magnetic properties[J]. Journal of Materials Science and Engineering, 39, 199-204(2021).

    [33] Chen P. Broadband absorber design based on electromagnetic metamaterials[D](2021).

    [34] Zhu Z H, Wang H. Research on optimizing technological parameters of fused deposition rapid prototyping[J]. Machinery Design & Manufacture, 130-133, 138(2021).

    Tools

    Get Citation

    Copy Citation Text

    Haihua Wu, Renjing Zhang, Zenghui Yang, Tiandong Cao, Kaixin Deng, Yan Li. Influence of Combination and Distribution of RGO/Fe3O4/PLA Composite Absorber on Absorption Performance of Pyramid[J]. Laser & Optoelectronics Progress, 2023, 60(9): 0916002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Jun. 7, 2022

    Accepted: Aug. 29, 2022

    Published Online: May. 9, 2023

    The Author Email: Wu Haihua (wuhaihua@ctgu.edu.cn)

    DOI:10.3788/LOP221792

    Topics