Chinese Journal of Lasers, Volume. 48, Issue 12, 1201003(2021)

Development of High-Power Ultrafast Fiber Laser Technology

Yizhou Liu1, Wenchao Qiao1, Kong Gao1,2, Rong Xu2, Tianli Feng1,2, Meng Zhang1, Xun Li3, Yangyang Liang1,2, and Tao Li1,2、*
Author Affiliations
  • 1Laser Physics and Technology Laboratory, School of Information Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
  • 2China Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Qingdao, Shandong 266237, China
  • 3State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an, Shaanxi 710119, China
  • show less
    References(129)

    [5] Tomlinson W J, Stolen R H, Shank C V. Compression of optical pulses chirped by self-phase modulation in fibers[C]. //Conference on Lasers and Electro-Optics, June 19-22, 1984, Anaheim, California, TUE4(1984).

    [7] Snitzer E, Po H, Hakimi F et al. Double clad, offset core Nd fiber laser[C]. //Optical Fiber Sensors, January 27, 1988, New Orleans, LA, PD5(1988).

    [8] Taverner D, Richardson D J, Dong L et al. 158-μJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier[J]. Optics Letters, 22, 378-380(1997).

    [9] Xue B, Fan W H, Liu H L et al. THz generation and detection based on the technology of ultra-fast femto-second laser[J], 37, 1-5(2008).

    [11] Zhao Y, Liu Y Z, Zhao D S et al. Evolution of mode-locked technology of fiber lasers[J]. Laser Technology, 33, 162-165(2009).

    [17] Li C, Wang G Z, Jiang T X et al. 750 MHz fundamental repetition rate femtosecond Yb∶fiber ring laser[J]. Optics Letters, 38, 314-316(2013).

    [18] Chong A, Buckley J, Renninger W et al. All-normal-dispersion femtosecond fiber laser[J]. Optics Express, 14, 10095-10100(2006).

    [20] Szczepanek J, Kardaś T M, Radzewicz C et al. Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers[C]. //Conference on Lasers and Electro-Optics, May 14-19, 2017, San Jose, California, SM2I, 5(2017).

    [22] Ma D, Cai Y, Zhou C et al. 37.4 fs pulse generation in an Er∶fiber laser at a 225 MHz repetition rate[J]. Optics Letters, 35, 2858-2860(2010).

    [32] Jia D F, Jin Y T, Sun X et al. Self-starting dual mode-locking Er-doped fiber laser with low repetition rate[C]. //2018 Asia Communications and Photonics Conference (ACP), October 26-29, 2018, Hangzhou, China., 1-3(2018).

    [33] Guo Z R, Hao Q, Peng J S et al. Environmentally stable Er-fiber mode-locked pulse generation and amplification by spectrally filtered and phase-biased nonlinear amplifying long-loop mirror[J]. High Power Laser Science and Engineering, 7, e47(2019).

    [36] Dou Z Y, Zhang B, He X et al. High-power and large-energy dissipative soliton resonance in a compact Tm-doped all-fiber laser[J]. IEEE Photonics Technology Letters, 31, 381-384(2019).

    [39] Li P X, Yao Y F, Chi J J et al. 980-nm all-fiber mode-locked Yb-doped phosphate fiber oscillator based on semiconductor saturable absorber mirror and its amplifier[J]. Chinese Physics B, 25, 084207(2016).

    [41] Chong A, Renninger W H, Wise F W. Environmentally stable all-normal-dispersion femtosecond fiber laser[J]. Optics Letters, 33, 1071-1073(2008).

    [45] Kuan P W, Li K F, Zhang L et al. 0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 28, 1525-1528(2016).

    [47] Olivier M, Boulanger V, Guilbert-Savary F et al. Femtosecond Mamyshev oscillator at 1550 nm[C]. //Advanced Solid State Lasers 2018, November 4-8, 2018, Boston, Massachusetts, United States, ATu1A, 4(2018).

    [49] Liu W, Liao R Y, Zhao J et al. Femtosecond Mamyshev oscillator with 10-MW-level peak power[J]. Optica, 6, 194-197(2019).

    [50] Mamyshev P V. All-optical data regeneration based on self-phase modulation effect[C]. //24th European Conference on Optical Communication. ECOC ‘98 (IEEE Cat. No.98TH8398), September 20-24, 1998, Madrid, Spain., 475-476(1998).

    [52] Regelskis K, Ž1eludevičius J, Viskontas K et al. Ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering[J]. Optics Letters, 40, 5255-5258(2015).

    [53] Chen Y H, Sidorenko P, Thorne R et al. Starting dynamics of a linear-cavity femtosecond Mamyshev oscillator[J]. Journal of the Optical Society of America B, 38, 743-748(2021).

    [54] Jiang T, Yin K, Wang C et al. Ultrafast fiber lasers mode-locked by two-dimensional materials:review and prospect[J]. Photonics Research, 8, 78-90(2020).

    [62] Zhang Z G, Song Y R, Sun D R et al. Compact and material-dispersion-compatible offner stretcher for chirped pulse amplifications[J]. Optics Communications, 206, 7-12(2002).

    [66] Chen H W, Sosnowski T, Liu C H et al. Chirally-coupled-core Yb-fiber laser delivering 80-fs pulses with diffraction-limited beam quality warranted by a high-dispersion mirror based compressor[J]. Optics Express, 18, 24699-24705(2010).

    [67] Hartl I, Imeshev G, Fermann M E. Yb fiber laser chirped pulse amplifier system using a fiber Bragg grating stretcher matched to the Treacy compressor[C]. //Advanced Solid-State Photonics 2004, February 1-4, 2004, Santa Fe, New Mexico, United States, MD2(2004).

    [74] Schimpf D N, Limpert J, Tünnermann A. Controlling the influence of SPM in fiber-based chirped-pulse amplification systems by using an actively shaped parabolic spectrum[J]. Optics Express, 15, 16945-16953(2007).

    [80] Eidam T, Hanf S, Seise E et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 35, 94-96(2010).

    [81] Jauregui C, Stihler C, Limpert J. Transverse mode instability[J]. Advances in Optics and Photonics, 12, 429-484(2020).

    [83] Seise E, Klenke A, Breitkopf S et al. 88 W 0.5 mJ femtosecond laser pulses from two coherently combined fiber amplifiers[J]. Optics Letters, 36, 3858-3860(2011).

    [87] Mueller M, Klenke A, Stark H et al. 16 channel coherently-combined ultrafast fiber laser[C]. //Advanced Solid State Lasers, October 1-5, 2017, Nagoya, Aichi, AW4A, 3(2017).

    [90] Kuznetsova L, Wise F W. Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification[J]. Optics Letters, 32, 2671-2673(2007).

    [91] Röser F, Eidam T, Rothhardt J et al. Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 32, 3495-3497(2007).

    [93] Röser F, Schimpf D, Schmidt O et al. 90 W average power 100 μJ energy femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 32, 2230-2232(2007).

    [94] Galvanauskas A, Cho G C, Hariharan A et al. Generation of high-energy femtosecond pulses in multimode-core Yb-fiber chirped-pulse amplification systems[J]. Optics Letters, 26, 935-937(2001).

    [96] Boullet J, Zaouter Y, Limpert J et al. High-order harmonic generation at a megahertz-level repetition rate directly driven by an ytterbium-doped-fiber chirped-pulse amplification system[J]. Optics Letters, 34, 1489-1491(2009).

    [109] Huang H D, Zhang Y, Teng H et al. Pre-chirp managed amplification of circularly polarized pulses using chirped mirrors for pulse compression[C]. //2019 Conference on Lasers and Electro-Optics, May 5-9, 2019, San Jose, California, SM3L, 3(2019).

    [110] Luo D P, Liu Y, Gu C L et al. High-power Yb-fiber comb based on pre-chirped-management self-similar amplification[J]. Applied Physics Letters, 112, 061106(2018).

    [111] Liu Y, Li W X, Luo D P et al. Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier[J]. Optics Express, 24, 10939-10945(2016).

    [112] Pei H Z, Ruppe J, Chen S Y et al. 10 mJ energy extraction from Yb-doped 85 μm core CCC fiber using coherent pulse stacking amplification of fs pulses[C]. //Advanced Solid State Lasers, October 1-5, 2017, Nagoya, Aichi, Japan, AW4A, 4(2017).

    [117] Liu Y Z, Liu W, Schimpf D N et al. 100-W few-cycle Yb-fiber laser source based on pre-chirp managed amplification employing circular polarization[C]. //Advanced Solid State Lasers 2016, October 30-November 3, 2016, Boston, Massachusetts, United States, JTh2A, 38(2016).

    [118] Herkommer C, Krötz P, Klingebiel S et al. Towards a joule-class ultrafast thin-disk based amplifier at kilohertz repetition rate[C]. //Conference on Lasers and Electro-Optics, May 5-10, 2019, San Jose, California, SM4E, 3(2019).

    [120] Fan G, Carpeggiani P A, Tao Z et al. 70 mJ nonlinear compression and scaling route for an Yb amplifier using large-core hollow fibers[J]. Optics Letters, 46, 896-899(2021).

    [121] Wang P F, Li Y Y, Li W K et al. 2.6 mJ/100 Hz CEP-stable near-single-cycle 4 μm laser based on OPCPA and hollow-core fiber compression[J]. Optics Letters, 43, 2197-2200(2018).

    [129] Beirow F, Eckerle M, Aubry N et al. A 290 W radially polarized output power from a single-stage single-crystal Yb∶YAG amplifier[C]. //2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 23-27, 2019, Munich, Germany., 19147883(2019).

    Tools

    Get Citation

    Copy Citation Text

    Yizhou Liu, Wenchao Qiao, Kong Gao, Rong Xu, Tianli Feng, Meng Zhang, Xun Li, Yangyang Liang, Tao Li. Development of High-Power Ultrafast Fiber Laser Technology[J]. Chinese Journal of Lasers, 2021, 48(12): 1201003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Mar. 3, 2021

    Accepted: Apr. 13, 2021

    Published Online: Jun. 11, 2021

    The Author Email: Li Tao (litao@sdu.edu.cn)

    DOI:10.3788/CJL202148.1201003

    Topics