PhotoniX
Co-Editors-in-Chief
Min GU, Min QIU
Xue-Qing Liu, Yong-Lai Zhang, Qian-Kun Li, Jia-Xin Zheng, Yi-Ming Lu, Saulius Juodkazis, Qi-Dai Chen, and Hong-Bo Sun

Femtosecond laser machining of biomimetic micro/nanostructures with high aspect ratio (larger than 10) on ultrahard materials, such as sapphire, is a challenging task, because the uncontrollable surface damage usually results in poor surface structures, especially for deep scribing. Here, we report an inside-out femtosecond laser deep scribing technology in combination with etching process for fabricating bio-inspired micro/nanostructures with high-aspect-ratio on sapphire. To effectively avoid the uncontrollable damage at the solid/air interface, a sacrificial layer of silicon oxide was employed for surface protection. High-quality microstructures with an aspect ratio as high as 80:1 have been fabricated on sapphire surface. As a proof-of-concept application, we produced a moth-eye inspired antireflective window with sub-wavelength pyramid arrays on sapphire surface, by which broadband (3–5 μm) and high transmittance (98% at 4 μm, the best results reported so far) have been achieved. The sacrificial layer assisted inside-out femtosecond laser deep scribing technology is effective and universal, holding great promise for producing micro/nanostructured optical devices.

Jan. 21, 2022
  • Vol. 3 Issue 1 1 (2022)
  • Xu Liu, Jingyuan Liu, Rong Xue, Heqing Wang, Hao Li, Xue Feng, Fang Liu, Kaiyu Cui, Zhen Wang, Lixing You, Yidong Huang, and Wei Zhang

    Quantum key distribution (QKD) would play an important role in future information technologies due to its theoretically proven security based on the laws of quantum mechanics. How to realize QKDs among multiple users in an effective and simple way is crucial for its real applications in communication networks. In this work, we propose and demonstrate a fully connected QKD network without trusted node for a large number of users. Using flexible wavelength division multiplexing/demultiplexing and space division multiplexing, entanglement resources generated by a broadband energy-time entangled quantum light source are distributed to 40 users. Any two users share a part of entanglement resources, by which QKD is established between them. As a result, it realizes a fully connected network with 40 users and 780 QKD links. The performance of this network architecture is also discussed theoretically, showing its potential on developing quantum communication networks with large user numbers owing to its simplicity, scalability, and high efficiency.

    Jan. 24, 2022
  • Vol. 3 Issue 1 2 (2022)
  • Zhengzhong Huang, Pasquale Memmolo, Pietro Ferraro, and Liangcai Cao

    Accurate depiction of waves in temporal and spatial is essential to the investigation of interactions between physical objects and waves. Digital holography (DH) can perform quantitative analysis of wave–matter interactions. Full detector-bandwidth reconstruction can be realized based on in-line DH. But the overlapping of twin images strongly prevents quantitative analysis. For off-axis DH, the object wave and the detector bandwidth need to satisfy certain conditions to perform reconstruction accurately. Here, we present a reliable approach involving a coupled configuration for combining two in-line holograms and one off-axis hologram, using a rapidly converging iterative procedure based on two-plane coupled phase retrieval (TwPCPR) method. It realizes a fast-convergence holographic calculation method. High-resolution and full-field reconstruction by exploiting the full bandwidth are demonstrated for complex-amplitude reconstruction. Off-axis optimization phase provides an effective initial guess to avoid stagnation and minimize the required measurements of multi-plane phase retrieval. The proposed strategy works well for more extended samples without any prior assumptions of the objects including support, non-negative, sparse constraints, etc. It helps to enhance and empower applications in wavefront sensing, computational microscopy and biological tissue analysis.

    Jan. 28, 2022
  • Vol. 3 Issue 1 3 (2022)
  • Quan Sheng, Aihua Wang, Yuanyuan Ma, Sijia Wang, Meng Wang, Zheng Shi, Junjie Liu, Shijie Fu, Wei Shi, Jianquan Yao, and Takashige Omatsu

    We investigate the generation of single-transverse-mode Laguerre-Gaussian (LG) emission from a diode-end-pumped Nd:YVO4, 1064 nm laser using mode selection via intracavity spherical aberration (SA). We present both theoretical and experimental investigations, examining the limits of the order (both radial and angular indices) of the LG modes which can be produced, along with the resultant output power. We found that in order to generate single-mode emission of low-order LG modes which have relatively small beam diameters, lenses with shorter focal-length were required (to better differentiate neighboring LG modes via SA). The converse was true of LG modes with high-order. Through appropriate choice of the focal length of the intracavity lens, we were able to generate single-mode, LG0,±m laser output with angular indices m selectable from 1 to 95, as well as those with non-zero radial indices p of up to 4.

    Feb. 10, 2022
  • Vol. 3 Issue 1 4 (2022)
  • Le-Yi Zhao, Hai Wang, Hai-Yu Wang, Qiang Zhou, Xu-Lin Zhang, Tong Cui, Lei Wang, Tian-Yu Liu, Yu-Xiao Han, Yang Luo, Yuan-Yuan Yue, Mu-Sen Song, and Hong-Bo Sun

    Strong light-matter interactions in two-dimensional transition metal dichalcogenides (TMDCs) with robust spin-valley degrees of freedom open up the prospect of valleytronic devices. A thorough understanding on the dynamics of the valley polarizations in the strong coupling regime is urgently required. Here, multiple polarized TMDCs-SPPs hybrid systems were constructed by combining monolayer WS2 flakes to linear, circular, and spiral Ag gratings, resulting in linear and circular polarized modulation on the coherent hybrid states, respectively. Particularly, valley polaritons can be tailored asymmetrically by chiral strong coupling regime. Furthermore, the dynamics of the polarized polaritons were directly analyzed by transient absorption (TA) measurement. Both of the linear and circular polarization difference in the TA spectra can be retained for a remarkable long time, leading to a polarized PL even at room temperature. More importantly, in the chiral strong coupled WS2-spiral Ag grating devices, the mechanism of the asymmetrical valley-polarized PL (p σ+ = 14.9% and p σ- = 10.8%) is proved by the opposite valley polarization dynamics in the circularly polarized TA spectra. The multiple polarization modulation in monolayer TMDCs-SPPs strong coupling devices could provide a viable route toward multiple polarization polaritonic devices.

    Feb. 11, 2022
  • Vol. 3 Issue 1 5 (2022)
  • Huanyu Sun, Shiling Wang, Xiaobo Hu, Hongjie Liu, Xiaoyan Zhou, Jin Huang, Xinglei Cheng, Feng Sun, Yubo Liu, and Dong Liu

    Surface defects (SDs) and subsurface defects (SSDs) are the key factors decreasing the laser damage threshold of optics. Due to the spatially stacked structure, accurately detecting and distinguishing them has become a major challenge. Herein a detection method for SDs and SSDs with multisensor image fusion is proposed. The optics is illuminated by a laser under dark field condition, and the defects are excited to generate scattering and fluorescence lights, which are received by two image sensors in a wide-field microscope. With the modified algorithms of image registration and feature-level fusion, different types of defects are identified and extracted from the scattering and fluorescence images. Experiments show that two imaging modes can be realized simultaneously by multisensor image fusion, and HF etching verifies that SDs and SSDs of polished optics can be accurately distinguished. This method provides a more targeted reference for the evaluation and control of the defects of optics, and exhibits potential in the application of material surface research.

    Mar. 02, 2022
  • Vol. 3 Issue 1 6 (2022)
  • Shoujun Zhang, Xieyu Chen, Kuan Liu, Haiyang Li, Yuehong Xu, Xiaohan Jiang, Yihan Xu, Qingwei Wang, Tun Cao, and Zhen Tian

    Miniaturized nonvolatile reconfigurable optical components with a subwavelength thickness, extremely compact size, high-speed response, and low power consumption will be the core of next-generation all-optical integrated devices and photonic computing to replace traditional bulky optical devices and integrated circuits, which are reaching physical limitations of Moore’s law. Metasurfaces, as ultrathin planar surfaces, have played a major role in controlling the amplitude, phase, and polarization of electromagnetic waves and can be combined with various active modulation methods to realize a variety of functional devices. However, most existing reconfigurable devices are bounded in volatile nature with constant power to maintain and single functionality, which restricts their further extensive applications. Chalcogenide phase change materials (PCM) have attracted considerable attention due to their unique optical properties in the visible and infrared domains, whereas in the terahertz (THz) regime, research on the reversible phase transition in large-scale areas and applications of Ge2Sb2Te5 (GST) are still under exploration. Here, we achieved reversible, repeated, and large-area switching of GST with the help of optical and thermal stimuli. Large-area amorphization with a 1 cm diameter of GST is realized by using a single laser pulse. Then, we incorporate GST into metasurface designs to realize nonvolatile, reconfigurable, multilevel, and broadband terahertz modulators, including the anomalous deflector, metalens, and focusing optical vortex (FOV) generator. Experimental results verify the feasibility of multilevel modulation of THz waves in a broadband frequency range. Moreover, the modulators are reusable and nonvolatile. The proposed approach presents novel avenues of nonvolatile and reconfigurable metasurface designs and can enable wide potential applications in imaging, sensing, and high-speed communications.

    Mar. 17, 2022
  • Vol. 3 Issue 1 7 (2022)
  • Binhao Wang, and Jifang Mu

    High-speed optical interconnects of data centers and high performance computers (HPC) have become the rapid development direction in the field of optical communication owing to the explosive growth of market demand. Currently, optical interconnect systems are moving towards higher capacity and integration. High-sensitivity receivers with avalanche photodiodes (APDs) are paid more attention due to the capability to enhance gain bandwidth. The impact ionization coefficient ratio is one crucial parameter for avalanche photodiode optimization, which significantly affects the excess noise and the gain bandwidth product (GBP). The development of silicon-germanium (Si-Ge) APDs are promising thanks to the low impact ionization coefficient ratio of silicon, the simple structure, and the CMOS compatible process. Separate absorption charge multiplication (SACM) structures are typically adopted in Si-Ge APDs to achieve high bandwidth and low noise. This paper reviews design and optimization in high-speed Si-Ge APDs, including advanced APD structures, APD modeling and APD receivers.

    Mar. 25, 2022
  • Vol. 3 Issue 1 8 (2022)
  • Richeng Lin, Yanming Zhu, Liang Chen, Wei Zheng, Mengxuan Xu, Jinlu Ruan, Renfu Li, Titao Li, Zhuogeng Lin, Lu Cheng, Ying Ding, Feng Huang, and Xiaoping Ouyang

    Large-size scintillators with high efficiency and ultrafast radiation fluorescence have shown more potential in the applications to ionizing radiation detection of medical diagnosis, nuclear control and high-energy physics. Currently, although traditional scintillators have made tremendous progress in scintillation efficiency, there are still challenges left in fluorescence lifetime. Faced with that problem, we adopted 2-inch ZnO as the substrate and doped gallium as activator to realize an ultrafast fluorescence excited by α-ray, of which the decay time is only 600 ps that is the shortest scintillation decay time reported so far. The results show that the shallow donor related with gallium not only effectively suppresses band-edge self-absorption, but makes ultrafast radiation possible, which gets gallium-doped ZnO as a potential scintillator for high-quality ultrafast dynamic imaging proved.

    Mar. 30, 2022
  • Vol. 3 Issue 1 9 (2022)
  • He Wang, Zhe Qin, Lingling Huang, Yongfeng Li, Ruizhe Zhao, Hongqiang Zhou, Haoyang He, Jieqiu Zhang, and Shaobo Qu

    Spin light manipulation based on chiral metasurfaces is a striking hotspot that has intrigued huge attention. Circular dichroism, a unique phenomenon of chiral atoms/molecules, has been regarded as another auxiliary dimension for guiding electromagnetic waves, which has been explored in the field of artificial material sciences yet a challenging issue. Here, a generic strategy based on dynamic chiral meta-atom for revealing strong circular dichroism as well as applicable electromagnetic functionality is proposed in microwave regime. We demonstrate a dynamic metasurface that enables the fully independent holograms reconstruction for one circular polarization or the other at the active operating state. On the other hand, the electromagnetic scattering is realized for lowering observable backward reflection at the passive state. Numerical simulation and experimental verification are conducted to manifest the feasibility. It is expected that the proposed strategy can be applied to broaden the horizon for dynamic chiral meta-devices and may find applications in information encryption, anti-counterfeiting, and other dynamic systems.

    Apr. 12, 2022
  • Vol. 3 Issue 1 10 (2022)
  • Tong Wang, Junfeng Jiang, Kun Liu, Shuang Wang, Panpan Niu, Yize Liu, and Tiegen Liu

    We proposed and demonstrated a flexible, endoscopic, and minimally invasive coherent anti-Raman Stokes scattering (CARS) measurement method for single-cell application, employing a tapered optical fiber probe. A few-mode fiber (FMF), whose generated four-wave mixing band is out of CARS signals, was selected to fabricate tapered optical fiber probes, deliver CARS excitation pulses, and collect CARS signals. The adiabatic tapered fiber probe with a diameter of 11.61 μm can focus CARS excitation lights without mismatch at the focal point. The measurements for proof-of-concept were made with methanol, ethanol, cyclohexane, and acetone injected into simulated cells. The experimental results show that the tapered optical fiber probe can detect carbon-hydrogen (C–H) bond-rich substances and their concentration. To our best knowledge, this optical fiber probe provides the minimum size among probes for detecting CARS signals. These results pave the way for minimally invasive live-cell detection in the future.

    Apr. 24, 2022
  • Vol. 3 Issue 1 11 (2022)
  • Chunlei Sun, Yuexin Yin, Zequn Chen, Yuting Ye, Ye Luo, Hui Ma, Lichun Wang, Maoliang Wei, Jialing Jian, Renjie Tang, Hao Dai, Jianghong Wu, Junying Li, Daming Zhang, Hongtao Lin, and Lan Li

    Free-spectral-range (FSR)-free optical filters have always been a critical challenge for photonic integrated circuits. A high-performance FSR-free filter is highly desired for communication, spectroscopy, and sensing applications. Despite significant progress in integrated optical filters, the FSR-free filter with a tunable narrow-band, high out-of-band rejection, and large fabrication tolerance has rarely been demonstrated. In this paper, we propose an exact and robust design method for add-drop filters (ADFs) with an FSR-free operation capability, a sub-nanometer optical bandwidth, and a high out-of-band rejection (OBR) ratio. The achieved filter has a 3-dB bandwidth of < 0.5 nm and an OBR ratio of 21.5 dB within a large waveband of 220 nm, which to the best of our knowledge, is the largest-FSR ADF demonstrated on a silicon photonic platform. The filter exhibits large tunability of 12.3 nm with a heating efficiency of 97 pm/mW and maintains the FSR-free feature in the whole tuning process. In addition, we fabricated a series of ADFs with different periods, which all showed reliable and excellent performances.

    Apr. 29, 2022
  • Vol. 3 Issue 1 12 (2022)
  • Zhou Zhou, Jiangfeng Huang, Xiang Li, Xiujuan Gao, Zhongyun Chen, Zhenfei Jiao, Zhihong Zhang, Qingming Luo, and Ling Fu

    Adaptive optics (AO) is a powerful tool for optical microscopy to counteract the effects of optical aberrations and improve the imaging performance in biological tissues. The diversity of sample characteristics entails the use of different AO schemes to measure the underlying aberrations. Here, we present an indirect wavefront sensing method leveraging a virtual imaging scheme and a structural-similarity-based shift measurement algorithm to enable aberration measurement using intrinsic structures even with temporally varying signals. We achieved high-resolution two-photon imaging in a variety of biological samples, including fixed biological tissues and living animals, after aberration correction. We present AO-incorporated subtractive imaging to show that our method can be readily integrated with resolution enhancement techniques to obtain higher resolution in biological tissues. The robustness of our method to signal variation is demonstrated by both simulations and aberration measurement on neurons exhibiting spontaneous activity in a living larval zebrafish.

    May. 27, 2022
  • Vol. 3 Issue 1 13 (2022)
  • Jiao Geng, Liping Shi, Junhuan Ni, Qiannan Jia, Wei Yan, and Min Qiu

    We design, fabricate, optically and mechanically characterize wearable ultrathin coatings on various substrates, including sapphire, glass and silicon wafer. Extremely hard ceramic materials titanium nitride (TiN), aluminium nitride (AlN), and titanium aluminium nitride (TiAlN) are employed as reflective, isolated and absorptive coating layer, respectively. Two types of coatings have been demonstrated. First, we deposit TiAlN after TiN on various substrates (TiAlN-TiN, total thicknesses <100 nm), achieving vivid and viewing-angle independent surface colors. The colors can be tuned by varying the thickness of TiAlN layer. The wear resistance of the colorful ultrathin optical coatings is verified by scratch tests. The Mohs hardness of commonly used surface coloring made of Si-/Ge-metals on substrates is <2.5, as soft as fingernail. However, the Mohs hardness of our TiAlN-TiN on substrates is evaulated to be 7-9, harder than quartz. Second, Fano-resonant optical coating (FROC), which can transmit and reflect the same color as a beam split filter is also obtained by successively coating TiAlN-TiN-AlN-TiN (four-layer film with a total thickness of 130 nm) on transparent substrates. The FROC coating is as hard as glass. Such wearable and color-tunable thin-film structural colors and filters may be attractive for many practical applications such as sunglasses.

    Jun. 28, 2022
  • Vol. 3 Issue 1 14 (2022)
  • Zihan Zhao, Yue Wang, Chunsheng Guan, Kuang Zhang, Qun Wu, Haoyu Li, Jian Liu, Shah Nawaz Burokur, and Xumin Ding

    In this paper, a novel strategy based on a metasurface composed of simple and compact unit cells to achieve ultra-high-speed trigonometric operations under specific input values is theoretically and experimentally demonstrated. An electromagnetic wave (EM)-based optical diffractive neural network with only one hidden layer is physically built to perform four trigonometric operations (sine, cosine, tangent, and cotangent functions). Under the unique composite input mode strategy, the designed optical trigonometric operator responds to incident light source modes that represent different trigonometric operations and input values (within one period), and generates correct and clear calculated results in the output layer. Such a wave-based operation is implemented with specific input values, and the proposed concept work may offer breakthrough inspiration to achieve integrable optical computing devices and photonic signal processors with ultra-fast running speeds.

    Jul. 12, 2022
  • Vol. 3 Issue 1 15 (2022)
  • Min Jiang, Hanshuo Wu, Yi An, Tianyue Hou, Qi Chang, Liangjin Huang, Jun Li, Rongtao Su, and Pu Zhou

    In recent years, machine learning, especially various deep neural networks, as an emerging technique for data analysis and processing, has brought novel insights into the development of fiber lasers, in particular complex, dynamical, or disturbance-sensitive fiber laser systems. This paper highlights recent attractive research that adopted machine learning in the fiber laser field, including design and manipulation for on-demand laser output, prediction and control of nonlinear effects, reconstruction and evaluation of laser properties, as well as robust control for lasers and laser systems. We also comment on the challenges and potential future development.

    Jul. 13, 2022
  • Vol. 3 Issue 1 16 (2022)
  • Ju Ke, Yingshan Sun, Changzhe Dong, Xingying Zhang, Zijun Wang, Liqing Lyu, Wei Zhu, Albert Ansmann, Lin Su, Lingbing Bu, Da Xiao, Shuaibo Wang, Sijie Chen, Jiqiao Liu, Weibiao Chen, and Dong Liu

    Aerosols and clouds greatly affect the Earth’s radiation budget and global climate. Light detection and ranging (lidar) has been recognized as a promising active remote sensing technique for the vertical observations of aerosols and clouds. China launched its first space-borne aerosol-cloud high-spectral-resolution lidar (ACHSRL) on April 16, 2022, which is capable for high accuracy profiling of aerosols and clouds around the globe. This study presents a retrieval algorithm for aerosol and cloud optical properties from ACHSRL which were compared with the end-to-end Monte-Carlo simulations and validated with the data from an airborne flight with the ACHSRL prototype (A2P) instrument. Using imaging denoising, threshold discrimination, and iterative reconstruction methods, this algorithm was developed for calibration, feature detection, and extinction coefficient (EC) retrievals. The simulation results show that 95.4% of the backscatter coefficient (BSC) have an error less than 12% while 95.4% of EC have an error less than 24%. Cirrus and marine and urban aerosols were identified based on the airborne measurements over different surface types. Then, comparisons were made with U.S. Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) profiles, Moderate-resolution Imaging Spectroradiometer (MODIS), and the ground-based sun photometers. High correlations (R > 0.79) were found between BSC (EC) profiles of A2P and CALIOP over forest and town cover, while the correlation coefficients are 0.57 for BSC and 0.58 for EC over ocean cover; the aerosol optical depth retrievals have correlation coefficient of 0.71 with MODIS data and show spatial variations consistent with those from the sun photometers. The algorithm developed for ACHSRL in this study can be directly employed for future space-borne high-spectral-resolution lidar (HSRL) and its data products will also supplement CALIOP data coverage for global observations of aerosol and cloud properties.

    Jul. 26, 2022
  • Vol. 3 Issue 1 17 (2022)
  • Jiaqi Zhou, Weiwei Pan, Weiao Qi, Xinru Cao, Zhi Cheng, and Yan Feng

    Ultrafast Raman fiber laser has been proved to be an effective method to obtain ultrafast optical pulses at special wavelength. Yet, compared with conventional rare-earth doped counterparts, it is challenging for Raman fiber lasers to generate pulses with high pulse energy and short pulse duration. Here, we review three categories of ultrafast Raman fiber laser technologies and give detailed discussions on the advantages and challenges of each. In regards to mode-locking, different saturable-absorbers-based fiber lasers are compared and their common problem resulting from long cavity length are discussed. In terms of synchronously-pumping, several approaches to match the repetition rate of pulsed pump with the length of Raman fiber cavity are discussed, while the technical complexity of each method is analyzed. Moreover, the recently developed technology termed as nonlinear optical gain modulation (NOGM) is introduced, which turns out to be a simple and quality solution to generate high-energy femtosecond pulses with wavelength agility. Compared with the others, NOGM gathers various advantages including simple structure, long-term stability, high pulse energy and short pulse duration, which may effectively promote application expansion of ultrafast Raman fiber laser in the near future.

    Aug. 04, 2022
  • Vol. 3 Issue 1 18 (2022)
  • Zhihong Zhang, Bo Zhang, Xin Yuan, Siming Zheng, Xiongfei Su, Jinli Suo, David J. Brady, and Qionghai Dai

    High-throughput imaging is highly desirable in intelligent analysis of computer vision tasks. In conventional design, throughput is limited by the separation between physical image capture and digital post processing. Computational imaging increases throughput by mixing analog and digital processing through the image capture pipeline. Yet, recent advances of computational imaging focus on the “compressive sampling”, this precludes the wide applications in practical tasks. This paper presents a systematic analysis of the next step for computational imaging built on snapshot compressive imaging (SCI) and semantic computer vision (SCV) tasks, which have independently emerged over the past decade as basic computational imaging platforms. SCI is a physical layer process that maximizes information capacity per sample while minimizing system size, power and cost. SCV is an abstraction layer process that analyzes image data as objects and features, rather than simple pixel maps. In current practice, SCI and SCV are independent and sequential. This concatenated pipeline results in the following problems: i) a large amount of resources are spent on task-irrelevant computation and transmission, ii) the sampling and design efficiency of SCI is attenuated, and iii) the final performance of SCV is limited by the reconstruction errors of SCI. Bearing these concerns in mind, this paper takes one step further aiming to bridge the gap between SCI and SCV to take full advantage of both approaches. After reviewing the current status of SCI, we propose a novel joint framework by conducting SCV on raw measurements captured by SCI to select the region of interest, and then perform reconstruction on these regions to speed up processing time. We use our recently built SCI prototype to verify the framework. Preliminary results are presented and the prospects for a joint SCI and SCV regime are discussed. By conducting computer vision tasks in the compressed domain, we envision that a new era of snapshot compressive imaging with limited end-to-end bandwidth is coming.

    Sep. 06, 2022
  • Vol. 3 Issue 1 19 (2022)
  • Chao Liu, Zhao Jiang, Xin Wang, Yi Zheng, Yi-Wei Zheng, and Qiong-Hua Wang

    Microscope such as fluorescence microscope, confocal microscope and two-photon microscope plays an important role in life science, laser processing and other fields. However, most microscopes only have discrete zoom rates. In this paper, a continuous optical zoom microscope with extended depth of field and 3D reconstruction is demonstrated for the first time. It consists of a zoom objective lens, a microscope holder, an adjustable three-dimensional object stage, an Abbe condenser and an LED light source. The zoom objective lens is composed of several liquid lenses and solid lenses. By adjusting the applied voltage to the liquid lens, the proposed microscope can achieve a large continuous magnification from 10? to 60?. Moreover, an improved shape from focus (SFF) algorithm and image fusion algorithm are designed for 3D reproduction. Based on the liquid lenses, the axial focusing position can be adjusted to obtain images with different depths, and then the extended depth of field and 3D reconstruction can be realized. Our experimental results demonstrate the feasibility of the proposed microscope. The proposed microscope is expected to be applied in the fields of pathological diagnosis, biological detection, etc.

    Sep. 15, 2022
  • Vol. 3 Issue 1 20 (2022)
  • Yifan Wang, Xin Xu, Zongren Dai, Ziyu Hua, Chenxiao Lin, Yubin Hou, Qian Zhang, Pu Wang, and Yidong Tan

    Frequency-swept interferometry (FSI) is a powerful ranging method with high precision and immunity to ambient light. However, the stand-off distance of the current FSI-based ranging system for noncooperative targets is relatively short because the weak echo power cannot provide the needed signal-to-noise ratio (SNR). Here, we report a ranging method that combines FSI and the laser feedback technique. Compared with conventional FSI, the interference between the weak echo signal and the local oscillator occurs in the laser cavity, which enhances the signal spontaneously and then provides an improved SNR. In the experiments, the detection limit of the echo power is less than 0.1 fW, with a 1 mW probe beam. Based on the enhancement from the laser feedback technique, the system can detect a noncooperative target that is up to hundreds of meters away in space without extra optical amplifiers. On the other hand, a large stand-off distance makes the system sensitive to environmental disturbance, which degrades the ranging precision. To address this issue, an interferometry-based compensation device, which is also sensitive to weak echoes from noncooperative targets, is proposed to monitor the optical-path-length drifts and ensure accurate beat frequency recognition. Moreover, the device can record distance changes during the integration time of ranging and track a moving target precisely with improved temporal resolution. Owing to the high sensitivity and the validity of the compensation approach, the standard deviation in 10 measurements is better than 0.07 mm when targeting an aluminum sheet at approximately 152 m. Generally, with a large range, high relative precision, and low photon consumption, the novel technical scheme for laser ranging demonstrates new capabilities that promise to enable a wide range of applications, such as large equipment assembly and noncooperative-target tracking.

    Sep. 30, 2022
  • Vol. 3 Issue 1 21 (2022)
  • Jiankun Hou, Jintian Lin, Jiefu Zhu, Guolin Zhao, Yao Chen, Fangxing Zhang, Yuanlin Zheng, Xianfeng Chen, Ya Cheng, Li Ge, and Wenjie Wan

    Transparency and perfect absorption are two contradictory terms; a perfect absorber never permits waves to transmit through. However, this statement only remains true in the linear regime, where the nonlinearity has been omitted and the physical system like the perfect absorber is not affected by the incoming waves. Here we experimentally demonstrate an intriguing self-induced transparency effect in a perfectly absorbing optical microcavity, which perfectly absorbs any incoming waves at the low power level, but allows a portion of waves to be transmitted at the higher power due to the nonlinear coupling between the fundamental and its second harmonic modes. Moreover, the asymmetric scattering nature of the microcavity enables a chiral and unidirectional reflection in one of the input ports, this leads to asymmetric and chiral coherent control of the perfect absorption states through phase varying. More importantly, such chiral behaviors also empower the chiral emission of second-harmonic generation with a high distinct ratio in the transparency state. These results pave the way for controllable transparency in a wide range of fields in optics, microwaves, acoustics, mechanics, and matter waves.

    Oct. 11, 2022
  • Vol. 3 Issue 1 22 (2022)
  • Jin Yao, Jun-Yu Ou, Vassili Savinov, Mu Ku Chen, Hsin Yu Kuo, Nikolay I. Zheludev, and Din Ping Tsai

    Electromagnetic anapole mode is a nonradiative state of light originating from the deconstructive interference of radiation of the oscillating electric and toroidal dipole moments. The high quality anapole-related resonances can be used in enhancing nonlinear electromagnetic properties of materials and in sensor applications. In this work, we experimentally demonstrate plasmonic anapole metamaterial sensor of environmental refractive index in the optical part of the spectrum. Our results show that the sensor exhibits high sensitivity to the ambient refractive index at the level of 330 nm/RIU and noise floor of 8.7 × 10-5 RIU. This work will pave the way for applications of anapole metamaterials in biosensing and spectroscopy.

    Oct. 14, 2022
  • Vol. 3 Issue 1 23 (2022)
  • Yefeng Shu, Jiasong Sun, Jiaming Lyu, Yao Fan, Ning Zhou, Ran Ye, Guoan Zheng, Qian Chen, and Chao Zuo

    Quantitative phase imaging (QPI) has emerged as a valuable tool for biomedical research thanks to its unique capabilities for quantifying optical thickness variation of living cells and tissues. Among many QPI methods, Fourier ptychographic microscopy (FPM) allows long-term label-free observation and quantitative analysis of large cell populations without compromising spatial and temporal resolution. However, high spatio-temporal resolution imaging over a long-time scale (from hours to days) remains a critical challenge: optically inhomogeneous structure of biological specimens as well as mechanical perturbations and thermal fluctuations of the microscope body all result in time-varying aberration and focus drifts, significantly degrading the imaging performance for long-term study. Moreover, the aberrations are sample- and environment-dependent, and cannot be compensated by a fixed optical design, thus necessitating rapid dynamic correction in the imaging process. Here, we report an adaptive optical QPI method based on annular illumination FPM. In this method, the annular matched illumination configuration (i.e., the illumination numerical aperture (NA) strictly equals to the objective NA), which is the key for recovering low-frequency phase information, is further utilized for the accurate imaging aberration characterization. By using only 6 low-resolution images captured with 6 different illumination angles matching the NA of a 10x, 0.4 NA objective, we recover high-resolution quantitative phase images (synthetic NA of 0.8) and characterize the aberrations in real time, restoring the optimum resolution of the system adaptively. Applying our method to live-cell imaging, we achieve diffraction-limited performance (full-pitch resolution of $$655\,nm$$ at a wavelength of $$525\,nm$$ ) across a wide field of view ( $$1.77\,mm^2$$ ) over an extended period of time.

    Oct. 21, 2022
  • Vol. 3 Issue 1 24 (2022)
  • Minfei He, Zhimin Zhang, Chun Cao, Yiwei Qiu, Xiaoming Shen, Guozun Zhou, Zixin Cai, Xinjie Sun, Xin He, Liang Xu, Xi Liu, Chenliang Ding, Yaoyu Cao, Cuifang Kuang, and Xu Liu

    Advances in direct laser writing to attain super-resolution are required to improve fabrication performance and develop potential applications for nanophotonics. In this study, a novel technique using single-color peripheral photoinhibition lithography was developed to improve the resolution of direct laser writing while preventing the chromatic aberration characteristics of conventional multicolor photoinhibition lithography, thus offering a robust tool for fabricating 2D and 3D nanophotonic structures. A minimal feature size of 36 nm and a resolution of 140 nm were achieved with a writing speed that was at least 10 times faster than existing photoinhibition lithography. Super-resolution and fast scanning enable the fabrication of spin-decoupled metasurfaces in the visible range within a printing duration of a few minutes. Finally, a subwavelength photonic crystal with a near-ultraviolet structural color was fabricated to demonstrate the potential of 3D printing. This technique is a flexible and reliable tool for fabricating ultracompact optical devices.

    Oct. 25, 2022
  • Vol. 3 Issue 1 25 (2022)
  • Carlos Ríos, Qingyang Du, Yifei Zhang, Cosmin-Constantin Popescu, Mikhail Y. Shalaginov, Paul Miller, Christopher Roberts, Myungkoo Kang, Kathleen A. Richardson, Tian Gu, Steven A. Vitale, and Juejun Hu

    Optical phase shifters constitute the fundamental building blocks that enable programmable photonic integrated circuits (PICs)—the cornerstone of on-chip classical and quantum optical technologies [1, 2]. Thus far, carrier modulation and thermo-optical effect are the chosen phenomena for ultrafast and low-loss phase shifters, respectively; however, the state and information they carry are lost once the power is turned off—they are volatile. The volatility not only compromises energy efficiency due to their demand for constant power supply, but also precludes them from emerging applications such as in-memory computing. To circumvent this limitation, we introduce a phase shifting mechanism that exploits the nonvolatile refractive index modulation upon structural phase transition of Sb2Se3, a bi-state transparent phase change material (PCM). A zero-static power and electrically-driven phase shifter is realized on a CMOS-backend silicon-on-insulator platform, featuring record phase modulation up to 0.09 π/µm and a low insertion loss of 0.3 dB/π, which can be further improved upon streamlined design. Furthermore, we demonstrate phase and extinction ratio trimming of ring resonators and pioneer a one-step partial amorphization scheme to enhance speed and energy efficiency of PCM devices. A diverse cohort of programmable photonic devices is demonstrated based on the ultra-compact PCM phase shifter.

    Oct. 26, 2022
  • Vol. 3 Issue 1 26 (2022)
  • Yefeng Shu, Jiasong Sun, Jiaming Lyu, Yao Fan, Ning Zhou, Ran Ye, Guoan Zheng, Qian Chen, and Chao Zuo

    Nov. 14, 2022
  • Vol. 3 Issue 1 27 (2022)
  • Cheng Zhang, Yujie Zhan, Yongxue Qiu, Leilei Xu, and Jianguo Guan

    Solar energy is an inexhaustible renewable energy resource, which is a potential solution to global warming and aids sustainable development. The use of solar-thermal collectors to harness solar energy facilitates low-cost heat storage and can improve the stability of power grids based on renewable energy. In solar-thermal collectors, traditional concentrators, such as parabolic troughs and dishes, are typically used but inevitably require high-precise supports and complex tracking sun systems, which increase the cost of solar-thermal power stations and hinder their further applications. In contrast, planar meta-lenses (so-called metasurface-based concentrators) consisting of two-dimensional nanostructured arrays are allowed to engineer the frequency dispersion and angular dispersion of the incident light through delicately arranging the aperture phase distribution, thereby correcting their inherent aberrations. Accordingly, the novel meta-lenses offer tremendous potentials to effectively capture broadband, wide-angle sunlight without the extra tracking system. This review summarizes the research motivation, design principles, building materials, and large-area fabrication methods of meta-lens for solar energy harvesting in terms of focusing efficiency, operation bandwidth, and angular dependence. In addition, the main challenges and future goals are examined.

    Nov. 29, 2022
  • Vol. 3 Issue 1 28 (2022)
  • Yan Li, Shuyi Chen, Haowen Liang, Xiuying Ren, Lingcong Luo, Yuye Ling, Shuxin Liu, Yikai Su, and Shin-Tson Wu

    Virtual reality (VR) and augmented reality (AR) have found widespread applications in education, engineering, healthcare, and entertainment. However, these near-eye displays are often bulky and heavy, and thus are not suitable for long-term wearing. Metalenses, with an ultra-thin formfactor, subwavelength modulation scale, and high modulation flexibility, are promising candidates to replace the conventional optics in AR display systems. In this work, we proposed and fabricated a novel reflective dielectric metalens-visor based on Pancharatnam-Berry phase with see-through capability. It achieves diffraction-limited focusing behavior for the reflected red light, while keeping a good transmission spectrum in the visible region. Hence, this single piece metalens-visor can perform the function of two integrated elements simultaneously: an eyepiece and an optical combiner, which in turn greatly reduces the weight and the size of an AR display. We have implemented a proof-of-concept AR display system employing the metalens-visor, and experimentally demonstrated color AR images with good image quality. This work reveals the great potential of multi-functional metasurface devices which enables optical integration in interdisciplinary applications including wearable displays, biological imaging, and aeronautic optical instruments.

    Nov. 29, 2022
  • Vol. 3 Issue 1 29 (2022)
  • Yi Zhang, Yuling Wang, Mingrui Wang, Yuduo Guo, Xinyang Li, Yifan Chen, Zhi Lu, Jiamin Wu, Xiangyang Ji, and Qionghai Dai

    High-speed visualization of three-dimensional (3D) processes across a large field of view with cellular resolution is essential for understanding living systems. Light-field microscopy (LFM) has emerged as a powerful tool for fast volumetric imaging. However, one inherent limitation of LFM is that the achievable lateral resolution degrades rapidly with the increase of the distance from the focal plane, which hinders the applications in observing thick samples. Here, we propose Spherical-Aberration-assisted scanning LFM (SAsLFM), a hardware-modification-free method that modulates the phase-space point-spread-functions (PSFs) to extend the effective high-resolution range along the z-axis by ~ 3 times. By transferring the foci to different depths, we take full advantage of the redundant light-field data to preserve finer details over an extended depth range and reduce artifacts near the original focal plane. Experiments on a USAF-resolution chart and zebrafish vasculatures were conducted to verify the effectiveness of the method. We further investigated the capability of SAsLFM in dynamic samples by imaging large-scale calcium transients in the mouse brain, tracking freely-moving jellyfish, and recording the development of Drosophila embryos. In addition, combined with deep-learning approaches, we accelerated the three-dimensional reconstruction of SAsLFM by three orders of magnitude. Our method is compatible with various phase-space imaging techniques without increasing system complexity and can facilitate high-speed large-scale volumetric imaging in thick samples.

    Nov. 30, 2022
  • Vol. 3 Issue 1 30 (2022)
  • Yi Zhang, Yuling Wang, Mingrui Wang, Yuduo Guo, Xinyang Li, Yifan Chen, Zhi Lu, Jiamin Wu, Xiangyang Ji, and Qionghai Dai

    Dec. 29, 2022
  • Vol. 3 Issue 1 31 (2022)
  • Please enter the answer below before you can view the full text.
    Submit