Nano-Micro Letters
Co-Editors-in-Chief
Yafei Zhang
Wenli Shu, Junxian Li, Guangwan Zhang, Jiashen Meng, Xuanpeng Wang, and Liqiang Mai

Aqueous sodium-ion batteries (ASIBs) and aqueous potassium-ion batteries (APIBs) present significant potential for large-scale energy storage due to their cost-effectiveness, safety, and environmental compatibility. Nonetheless, the intricate energy storage mechanisms in aqueous electrolytes place stringent requirements on the host materials. Prussian blue analogs (PBAs), with their open three-dimensional framework and facile synthesis, stand out as leading candidates for aqueous energy storage. However, PBAs possess a swift capacity fade and limited cycle longevity, for their structural integrity is compromised by the pronounced dissolution of transition metal (TM) ions in the aqueous milieu. This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs. The dissolution mechanisms of TM ions in PBAs, informed by their structural attributes and redox processes, are thoroughly examined. Moreover, this study delves into innovative design tactics to alleviate the dissolution issue of TM ions. In conclusion, the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.

Feb. 21, 2024
  • Vol. 16 Issue 1 128 (2024)
  • Xiaoxiao Jia, Chaofeng Liu, Zhi Wang, Di Huang, and Guozhong Cao

    Vanadium oxides, particularly hydrated forms like V2O5·nH2O (VOH), stand out as promising cathode candidates for aqueous zinc ion batteries due to their adjustable layered structure, unique electronic characteristics, and high theoretical capacities. However, challenges such as vanadium dissolution, sluggish Zn2+ diffusion kinetics, and low operating voltage still hinder their direct application. In this study, we present a novel vanadium oxide ([C6H6N(CH3)3]1.08V8O20·0.06H2O, TMPA-VOH), developed by pre-inserting trimethylphenylammonium (TMPA+) cations into VOH. The incorporation of weakly polarized organic cations capitalizes on both ionic pre-intercalation and molecular pre-intercalation effects, resulting in a phase and morphology transition, an expansion of the interlayer distance, extrusion of weakly bonded interlayer water, and a substantial increase in V4+ content. These modifications synergistically reduce the electrostatic interactions between Zn2+ and the V–O lattice, enhancing structural stability and reaction kinetics during cycling. As a result, TMPA-VOH achieves an elevated open circuit voltage and operation voltage, exhibits a large specific capacity (451 mAh g–1 at 0.1 A g–1) coupled with high energy efficiency (89%), the significantly-reduced battery polarization, and outstanding rate capability and cycling stability. The concept introduced in this study holds great promise for the development of high-performance oxide-based energy storage materials.

    Feb. 22, 2024
  • Vol. 16 Issue 1 129 (2024)
  • Jiajia Qiu, Yu Duan, Shaoyuan Li, Huaping Zhao, Wenhui Ma, Weidong Shi, and Yong Lei

    Adopting a nano- and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy storage devices at all technology readiness levels. Due to various challenging issues, especially limited stability, nano- and micro-structured (NMS) electrodes undergo fast electrochemical performance degradation. The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement, even though it only occupies complementary and facilitating components for the main mechanism. However, extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies. This review will aim at highlighting these NMS scaffold design strategies, summarizing their corresponding strengths and challenges, and thereby outlining the potential solutions to resolve these challenges, design principles, and key perspectives for future research in this field. Therefore, this review will be one of the earliest reviews from this viewpoint.

    Feb. 23, 2024
  • Vol. 16 Issue 1 130 (2024)
  • Meng Lian, Wei Ding, Song Liu, Yufeng Wang, Tianyi Zhu, Yue-E. Miao, Chao Zhang, and Tianxi Liu

    The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging. Herein, a delaminated aerogel film (DAF) is fabricated through filtration-induced delaminated gelation and ambient drying. The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber (FCNF) at the solid–liquid interface between the filter and the filtrate during filtration, resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding. By exchanging the solvents from water to hexane, the hydrogen bonding in the FCNF hydrogel is further enhanced, enabling the formation of the DAF with intra-layer mesopores upon ambient drying. The resulting aerogel film is lightweight and ultra-flexible, which possesses desirable properties of high visible-light transmittance (91.0%), low thermal conductivity (33 mW m-1 K-1), and high atmospheric-window emissivity (90.1%). Furthermore, the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups, enhancing its durability and UV resistance. Consequently, the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting, thermal insulation, and daytime radiative cooling under direct sunlight. Significantly, the enclosed space protected by the DAF exhibits a temperature reduction of 2.6 °C compared to that shielded by conventional architectural glass.

    Feb. 26, 2024
  • Vol. 16 Issue 1 131 (2024)
  • Yuting Xiang, Keda Shi, Ying Li, Jiajin Xue, Zhicheng Tong, Huiming Li, Zhongjun Li, Chong Teng, Jiaru Fang, and Ning Hu

    The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience. In recent years, active micro/nano-bioelectronic devices have undergone significant advancements, thereby facilitating the study of electrophysiology. The distinctive configuration and exceptional functionality of these active micro-nano-collaborative bioelectronic devices offer the potential for the recording of high-fidelity action potential signals on a large scale. In this paper, we review three-dimensional active nano-transistors and planar active micro-transistors in terms of their applications in electro-excitable cells, focusing on the evaluation of the effects of active micro/nano-bioelectronic devices on electrophysiological signals. Looking forward to the possibilities, challenges, and wide prospects of active micro-nano-devices, we expect to advance their progress to satisfy the demands of theoretical investigations and medical implementations within the domains of cardiology and neuroscience research.

    Feb. 27, 2024
  • Vol. 16 Issue 1 132 (2024)
  • Wenxiao Wang, Yaqi Wang, Feifei Yin, Hongsen Niu, Young-Kee Shin, Yang Li, Eun-Seong Kim, and Nam-Young Kim

    Neuromorphic hardware equipped with associative learning capabilities presents fascinating applications in the next generation of artificial intelligence. However, research into synaptic devices exhibiting complex associative learning behaviors is still nascent. Here, an optoelectronic memristor based on Ag/TiO2 Nanowires: ZnO Quantum dots/FTO was proposed and constructed to emulate the biological associative learning behaviors. Effective implementation of synaptic behaviors, including long and short-term plasticity, and learning-forgetting-relearning behaviors, were achieved in the device through the application of light and electrical stimuli. Leveraging the optoelectronic co-modulated characteristics, a simulation of neuromorphic computing was conducted, resulting in a handwriting digit recognition accuracy of 88.9%. Furthermore, a 3 × 7 memristor array was constructed, confirming its application in artificial visual memory. Most importantly, complex biological associative learning behaviors were emulated by mapping the light and electrical stimuli into conditioned and unconditioned stimuli, respectively. After training through associative pairs, reflexes could be triggered solely using light stimuli. Comprehensively, under specific optoelectronic signal applications, the four features of classical conditioning, namely acquisition, extinction, recovery, and generalization, were elegantly emulated. This work provides an optoelectronic memristor with associative behavior capabilities, offering a pathway for advancing brain-machine interfaces, autonomous robots, and machine self-learning in the future.

    Feb. 27, 2024
  • Vol. 16 Issue 1 133 (2024)
  • Yu-Ying Shi, Si-Yuan Liao, Qiao-Feng Wang, Xin-Yun Xu, Xiao-Yun Wang, Xin-Yin Gu, You-Gen Hu, Peng-Li Zhu, Rong Sun, and Yan-Jun Wan

    The remarkable properties of carbon nanotubes (CNTs) have led to promising applications in the field of electromagnetic interference (EMI) shielding. However, for macroscopic CNT assemblies, such as CNT film, achieving high electrical and mechanical properties remains challenging, which heavily depends on the tube–tube interactions of CNTs. Herein, we develop a novel strategy based on metal–organic decomposition (MOD) to fabricate a flexible silver–carbon nanotube (Ag–CNT) film. The Ag particles are introduced in situ into the CNT film through annealing of MOD, leading to enhanced tube–tube interactions. As a result, the electrical conductivity of Ag–CNT film is up to 6.82 × 105 S m-1, and the EMI shielding effectiveness of Ag–CNT film with a thickness of ~ 7.8 μm exceeds 66 dB in the ultra-broad frequency range (3–40 GHz). The tensile strength and Young’s modulus of Ag–CNT film increase from 30.09 ± 3.14 to 76.06 ± 6.20 MPa (~ 253%) and from 1.12 ± 0.33 to 8.90 ± 0.97 GPa (~ 795%), respectively. Moreover, the Ag–CNT film exhibits excellent near-field shielding performance, which can effectively block wireless transmission. This innovative approach provides an effective route to further apply macroscopic CNT assemblies to future portable and wearable electronic devices.

    Feb. 27, 2024
  • Vol. 16 Issue 1 134 (2024)
  • Poushali Das, Parham Khoshbakht Marvi, Sayan Ganguly, Xiaowu (Shirley) Tang, Bo Wang, Seshasai Srinivasan, Amin Reza Rajabzadeh, and Andreas Rosenkranz

    Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human–machine interfaces. One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials. MXenes, a new family of 2D nanomaterials, have been drawing attention since the last decade due to their high electronic conductivity, processability, mechanical robustness and chemical tunability. In this review, we encompass the fabrication of MXene-based polymeric nanocomposites, their structure–property relationship, and applications in the flexible sensor domain. Moreover, our discussion is not only limited to sensor design, their mechanism, and various modes of sensing platform, but also their future perspective and market throughout the world. With our article, we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies.

    Feb. 27, 2024
  • Vol. 16 Issue 1 135 (2024)
  • Xin Jia, Panzhe Qiao, Xiaowu Wang, Muyu Yan, Yang Chen, Bao-Li An, Pengfei Hu, Bo Lu, Jing Xu, Zhenggang Xue, and Jiaqiang Xu

    Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction. Herein, we present an ingenious feedback-regulation system by changing the interactional mode between single Pt atoms and adjacent S species for high-efficiency SO2 sensing. We found that the single Pt sites on the MoS2 surface can induce easier volatilization of adjacent S species to activate the whole inert S plane. Reversely, the activated S species can provide a feedback role in tailoring the antibonding-orbital electronic occupancy state of Pt atoms, thus creating a combined system involving S vacancy-assisted single Pt sites (Pt-Vs) to synergistically improve the adsorption ability of SO2 gas molecules. Furthermore, in situ Raman, ex situ X-ray photoelectron spectroscopy testing and density functional theory analysis demonstrate the intact feedback-regulation system can expand the electron transfer path from single Pt sites to whole Pt-MoS2 supports in SO2 gas atmosphere. Equipped with wireless-sensing modules, the final Pt1-MoS2-def sensors array can further realize real-time monitoring of SO2 levels and cloud-data storage for plant growth. Such a fundamental understanding of the intrinsic link between atomic interface and sensing mechanism is thus expected to broaden the rational design of highly effective gas sensors.

    Feb. 27, 2024
  • Vol. 16 Issue 1 136 (2024)
  • Tian Wang, Qiao Xi, Kai Yao, Yuhang Liu, Hao Fu, Venkata Siva Kavarthapu, Jun Kyu Lee, Shaocong Tang, Dina Fattakhova-Rohlfing, Wei Ai, and Jae Su Yu

    Feb. 28, 2024
  • Vol. 16 Issue 1 137 (2024)
  • Ghazanfar Nazir, Adeela Rehman, Jong-Hoon Lee, Choong-Hee Kim, Jagadis Gautam, Kwang Heo, Sajjad Hussain, Muhammad Ikram, Abeer A. AlObaid, Seul-Yi Lee, and Soo-Jin Park

    Zinc–air batteries (ZABs) are gaining attention as an ideal option for various applications requiring high-capacity batteries, such as portable electronics, electric vehicles, and renewable energy storage. ZABs offer advantages such as low environmental impact, enhanced safety compared to Li-ion batteries, and cost-effectiveness due to the abundance of zinc. However, early research faced challenges due to parasitic reactions at the zinc anode and slow oxygen redox kinetics. Recent advancements in restructuring the anode, utilizing alternative electrolytes, and developing bifunctional oxygen catalysts have significantly improved ZABs. Scientists have achieved battery reversibility over thousands of cycles, introduced new electrolytes, and achieved energy efficiency records surpassing 70%. Despite these achievements, there are challenges related to lower power density, shorter lifespan, and air electrode corrosion leading to performance degradation. This review paper discusses different battery configurations, and reaction mechanisms for electrically and mechanically rechargeable ZABs, and proposes remedies to enhance overall battery performance. The paper also explores recent advancements, applications, and the future prospects of electrically/mechanically rechargeable ZABs.

    Feb. 29, 2024
  • Vol. 16 Issue 1 138 (2024)
  • Yizhe Li, Yajie Li, Hao Sun, Liyao Gao, Xiangrong Jin, Yaping Li, Zhi LV, Lijun Xu, Wen Liu, and Xiaoming Sun

    The exploration of sustainable energy utilization requires the implementation of advanced electrochemical devices for efficient energy conversion and storage, which are enabled by the usage of cost-effective, high-performance electrocatalysts. Currently, heterogeneous atomically dispersed catalysts are considered as potential candidates for a wide range of applications. Compared to conventional catalysts, atomically dispersed metal atoms in carbon-based catalysts have more unsaturated coordination sites, quantum size effect, and strong metal–support interactions, resulting in exceptional catalytic activity. Of these, dual-atomic catalysts (DACs) have attracted extensive attention due to the additional synergistic effect between two adjacent metal atoms. DACs have the advantages of full active site exposure, high selectivity, theoretical 100% atom utilization, and the ability to break the scaling relationship of adsorption free energy on active sites. In this review, we summarize recent research advancement of DACs, which includes (1) the comprehensive understanding of the synergy between atomic pairs; (2) the synthesis of DACs; (3) characterization methods, especially aberration-corrected scanning transmission electron microscopy and synchrotron spectroscopy; and (4) electrochemical energy-related applications. The last part focuses on great potential for the electrochemical catalysis of energy-related small molecules, such as oxygen reduction reaction, CO2 reduction reaction, hydrogen evolution reaction, and N2 reduction reaction. The future research challenges and opportunities are also raised in prospective section.

    Feb. 29, 2024
  • Vol. 16 Issue 1 139 (2024)
  • Jianmin Yang, Li Chang, Xiqi Zhang, Ziquan Cao, and Lei Jiang

    The controlled assembly of nanomaterials has demonstrated significant potential in advancing technological devices. However, achieving highly efficient and low-loss assembly technique for nanomaterials, enabling the creation of hierarchical structures with distinctive functionalities, remains a formidable challenge. Here, we present a method for nanomaterial assembly enhanced by ionic liquids, which enables the fabrication of highly stable, flexible, and transparent electrodes featuring an organized layered structure. The utilization of hydrophobic and nonvolatile ionic liquids facilitates the production of stable interfaces with water, effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface. Furthermore, the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior, enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film. The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4 Ω sq-1 and 93% transmittance, but also showcases remarkable environmental stability and mechanical flexibility. Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices. This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials.

    Mar. 04, 2024
  • Vol. 16 Issue 1 140 (2024)
  • Zejun Sun, Jinlin Yang, Hongfei Xu, Chonglai Jiang, Yuxiang Niu, Xu Lian, Yuan Liu, Ruiqi Su, Dayu Liu, Yu Long, Meng Wang, Jingyu Mao, Haotian Yang, Baihua Cui, Yukun Xiao, Ganwen Chen, Qi Zhang, Zhenxiang Xing, Jisheng Pan, Gang Wu, and Wei Chen

    An anion-rich electric double layer (EDL) region is favorable for fabricating an inorganic-rich solid–electrolyte interphase (SEI) towards stable lithium metal anode in ester electrolyte. Herein, cetyltrimethylammonium bromide (CTAB), a cationic surfactant, is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating. In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO3-/FSI- anions in the EDL region due to the positively charged CTA+. In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI, which helps improve the kinetics of Li+ transfer, lower the charge transfer activation energy, and homogenize Li deposition. As a result, the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm-2 with a capacity of 1 mAh cm-2. Moreover, Li||LiFePO4 and Li||LiCoO2 with a high cathode mass loading of > 10 mg cm-2 can be stably cycled over 180 cycles.

    Mar. 04, 2024
  • Vol. 16 Issue 1 141 (2024)
  • Siavash Iravani, and Rajender S. Varma

    Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics, biomedical devices, and biomimetic systems. These actuators mimic the natural movements of living organisms, aiming to attain enhanced flexibility, adaptability, and versatility. On the other hand, angle-independent structural color has been achieved through innovative design strategies and engineering approaches. By carefully controlling the size, shape, and arrangement of nanostructures, researchers have been able to create materials exhibiting consistent colors regardless of the viewing angle. One promising class of materials that holds great potential for bioinspired soft actuators is MXenes in view of their exceptional mechanical, electrical, and optical properties. The integration of MXenes for bioinspired soft actuators with angle-independent structural color offers exciting possibilities. Overcoming material compatibility issues, improving color reproducibility, scalability, durability, power supply efficiency, and cost-effectiveness will play vital roles in advancing these technologies. This perspective appraises the development of bioinspired MXene-centered soft actuators with angle-independent structural color in soft robotics.

    Mar. 04, 2024
  • Vol. 16 Issue 1 142 (2024)
  • Jie Ma, Siyang Xing, Yabo Wang, Jinhu Yang, and Fei Yu

    Despite the promising potential of transition metal oxides (TMOs) as capacitive deionization (CDI) electrodes, the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity, posing a major obstacle. Herein, we prepared the kinetically favorable ZnxNi1 - xO electrode in situ growth on carbon felt (ZnxNi1 - xO@CF) through constraining the rate of OH- generation in the hydrothermal method. ZnxNi1 - xO@CF exhibited a high-density hierarchical nanosheet structure with three-dimensional open pores, benefitting the ion transport/electron transfer. And tuning the moderate amount of redox-inert Zn-doping can enhance surface electroactive sites, actual activity of redox-active Ni species, and lower adsorption energy, promoting the adsorption kinetic and thermodynamic of the Zn0.2Ni0.8O@CF. Benefitting from the kinetic-thermodynamic facilitation mechanism, Zn0.2Ni0.8O@CF achieved ultrahigh desalination capacity (128.9 mgNaCl g-1), ultra-low energy consumption (0.164 kW h kgNaCl-1), high salt removal rate (1.21 mgNaCl g-1 min-1), and good cyclability. The thermodynamic facilitation and Na+ intercalation mechanism of Zn0.2Ni0.8O@CF are identified by the density functional theory calculations and electrochemical quartz crystal microbalance with dissipation monitoring, respectively. This research provides new insights into controlling electrochemically favorable morphology and demonstrates that Zn-doping, which is redox-inert, is essential for enhancing the electrochemical performance of CDI electrodes.

    Mar. 04, 2024
  • Vol. 16 Issue 1 143 (2024)
  • Tingting Liu, Han Wu, Hao Wang, Yiran Jiao, Xiaofan Du, Jinzhi Wang, Guangying Fu, Yaojian Zhang, Jingwen Zhao, and Guanglei Cui

    Aqueous sodium-ion batteries are known for poor rechargeability because of the competitive water decomposition reactions and the high electrode solubility. Improvements have been reported by salt-concentrated and organic-hybridized electrolyte designs, however, at the expense of cost and safety. Here, we report the prolonged cycling of ASIBs in routine dilute electrolytes by employing artificial electrode coatings consisting of NaX zeolite and NaOH-neutralized perfluorinated sulfonic polymer. The as-formed composite interphase exhibits a molecular-sieving effect jointly played by zeolite channels and size-shrunken ionic domains in the polymer matrix, which enables high rejection of hydrated Na+ ions while allowing fast dehydrated Na+ permeance. Applying this coating to electrode surfaces expands the electrochemical window of a practically feasible 2 mol kg–1 sodium trifluoromethanesulfonate aqueous electrolyte to 2.70 V and affords Na2MnFe(CN)6//NaTi2(PO4)3 full cells with an unprecedented cycling stability of 94.9% capacity retention after 200 cycles at 1 C. Combined with emerging electrolyte modifications, this molecular-sieving interphase brings amplified benefits in long-term operation of ASIBs.

    Mar. 04, 2024
  • Vol. 16 Issue 1 144 (2024)
  • Junjie Zheng, Bao Zhang, Xin Chen, Wenyu Hao, Jia Yao, Jingying Li, Yi Gan, Xiaofang Wang, Xingtai Liu, Ziang Wu, Youwei Liu, Lin Lv, Li Tao, Pei Liang, Xiao Ji, Hao Wang, and Houzhao Wan

    Aqueous Zn-ion batteries (AZIBs) have attracted increasing attention in next-generation energy storage systems due to their high safety and economic. Unfortunately, the side reactions, dendrites and hydrogen evolution effects at the zinc anode interface in aqueous electrolytes seriously hinder the application of aqueous zinc-ion batteries. Here, we report a critical solvation strategy to achieve reversible zinc electrochemistry by introducing a small polar molecule acetonitrile to form a “catcher” to arrest active molecules (bound water molecules). The stable solvation structure of [Zn(H2O)6]2+ is capable of maintaining and completely inhibiting free water molecules. When [Zn(H2O)6]2+ is partially desolvated in the Helmholtz outer layer, the separated active molecules will be arrested by the “catcher” formed by the strong hydrogen bond N–H bond, ensuring the stable desolvation of Zn2+. The Zn||Zn symmetric battery can stably cycle for 2250 h at 1 mAh cm-2, Zn||V6O13 full battery achieved a capacity retention rate of 99.2% after 10,000 cycles at 10 A g-1. This paper proposes a novel critical solvation strategy that paves the route for the construction of high-performance AZIBs.

    Mar. 05, 2024
  • Vol. 16 Issue 1 145 (2024)
  • Jeong-Woong Shin, Dong-Je Kim, Tae-Min Jang, Won Bae Han, Joong Hoon Lee, Gwan-Jin Ko, Seung Min Yang, Kaveti Rajaram, Sungkeun Han, Heeseok Kang, Jun Hyeon Lim, Chan-Hwi Eom, Amay J. Bandodkar, Hanul Min, and Suk-Won Hwang

    Mar. 06, 2024
  • Vol. 16 Issue 1 146 (2024)
  • Roohallah Saberi Riseh, Mohadeseh Hassanisaadi, Masoumeh Vatankhah, Rajender S. Varma, and Vijay Kumar Thakur

    Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers. In this context, renewable biopolymers being more sustainable offer a viable solution to improve agricultural sustainability and production. Nano/micro-structural supramolecular biopolymers are among these innovative biopolymers that are much sought after for their unique features. These biomaterials have complex hierarchical structures, great stability, adjustable mechanical strength, stimuli-responsiveness, and self-healing attributes. Functional molecules may be added to their flexible structure, for enabling novel agricultural uses. This overview scrutinizes how nano/micro-structural supramolecular biopolymers may radically alter farming practices and solve lingering problems in agricultural sector namely improve agricultural production, soil health, and resource efficiency. Controlled bioactive ingredient released from biopolymers allows the tailored administration of agrochemicals, bioactive agents, and biostimulators as they enhance nutrient absorption, moisture retention, and root growth. Nano/micro-structural supramolecular biopolymers may protect crops by appending antimicrobials and biosensing entities while their eco-friendliness supports sustainable agriculture. Despite their potential, further studies are warranted to understand and optimize their usage in agricultural domain. This effort seeks to bridge the knowledge gap by investigating their applications, challenges, and future prospects in the agricultural sector. Through experimental investigations and theoretical modeling, this overview aims to provide valuable insights into the practical implementation and optimization of supramolecular biopolymers in sustainable agriculture, ultimately contributing to the development of innovative and eco-friendly solutions to enhance agricultural productivity while minimizing environmental impact.

    Mar. 08, 2024
  • Vol. 16 Issue 1 147 (2024)
  • Fujuan Wang, Tianyun Zhang, Tian Zhang, Tianqi He, and Fen Ran

    Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries; however, its poor rate performance at higher current density remains a challenge to achieve high power density sodium-ion batteries. The present review comprehensively elucidates the structural characteristics of cellulose-based materials and cellulose-derived carbon materials, explores the limitations in enhancing rate performance arising from ion diffusion and electronic transfer at the level of cellulose-derived carbon materials, and proposes corresponding strategies to improve rate performance targeted at various precursors of cellulose-based materials. This review also presents an update on recent progress in cellulose-based materials and cellulose-derived carbon materials, with particular focuses on their molecular, crystalline, and aggregation structures. Furthermore, the relationship between storage sodium and rate performance the carbon materials is elucidated through theoretical calculations and characterization analyses. Finally, future perspectives regarding challenges and opportunities in the research field of cellulose-derived carbon anodes are briefly highlighted.

    Mar. 11, 2024
  • Vol. 16 Issue 1 148 (2024)
  • King Yan Chung, Bingang Xu, Di Tan, Qingjun Yang, Zihua Li, and Hong Fu

    Achieving flexible electronics with comfort and durability comparable to traditional textiles is one of the ultimate pursuits of smart wearables. Ink printing is desirable for e-textile development using a simple and inexpensive process. However, fabricating high-performance atop textiles with good dispersity, stability, biocompatibility, and wearability for high-resolution, large-scale manufacturing, and practical applications has remained challenging. Here, water-based multi-walled carbon nanotubes (MWCNTs)-decorated liquid metal (LM) inks are proposed with carbonaceous gallium–indium micro-nanostructure. With the assistance of biopolymers, the sodium alginate-encapsulated LM droplets contain high carboxyl groups which non-covalently crosslink with silk sericin-mediated MWCNTs. E-textile can be prepared subsequently via printing technique and natural waterproof triboelectric coating, enabling good flexibility, hydrophilicity, breathability, wearability, biocompatibility, conductivity, stability, and excellent versatility, without any artificial chemicals. The obtained e-textile can be used in various applications with designable patterns and circuits. Multi-sensing applications of recognizing complex human motions, breathing, phonation, and pressure distribution are demonstrated with repeatable and reliable signals. Self-powered and energy-harvesting capabilities are also presented by driving electronic devices and lighting LEDs. As proof of concept, this work provides new opportunities in a scalable and sustainable way to develop novel wearable electronics and smart clothing for future commercial applications.

    Mar. 11, 2024
  • Vol. 16 Issue 1 149 (2024)
  • Guan Wang, Guixin Wang, Linfeng Fei, Lina Zhao, and Haitao Zhang

    The severe degradation of electrochemical performance for lithium-ion batteries (LIBs) at low temperatures poses a significant challenge to their practical applications. Consequently, extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li+ diffusion kinetics for achieving favorable low-temperature performance of LIBs. Herein, we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials. First, we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures. Second, detailed discussions concerning the key pathways (boosting electronic conductivity, enhancing Li+ diffusion kinetics, and inhibiting lithium dendrite) for improving the low-temperature performance of anode materials are presented. Third, several commonly used low-temperature anode materials are briefly introduced. Fourth, recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design, morphology control, surface & interface modifications, and multiphase materials. Finally, the challenges that remain to be solved in the field of low-temperature anode materials are discussed. This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.

    Mar. 11, 2024
  • Vol. 16 Issue 1 150 (2024)
  • Hongxiong Li, Zhaofu Ding, Quan Zhou, Jun Chen, Zhuoxin Liu, Chunyu Du, Lirong Liang, and Guangming Chen

    Despite notable progress in thermoelectric (TE) materials and devices, developing TE aerogels with high-temperature resistance, superior TE performance and excellent elasticity to enable self-powered high-temperature monitoring/warning in industrial and wearable applications remains a great challenge. Herein, a highly elastic, flame-retardant and high-temperature-resistant TE aerogel, made of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/single-walled carbon nanotube (PEDOT:PSS/SWCNT) composites, has been fabricated, displaying attractive compression-induced power factor enhancement. The as-fabricated sensors with the aerogel can achieve accurately pressure stimuli detection and wide temperature range monitoring. Subsequently, a flexible TE generator is assembled, consisting of 25 aerogels connected in series, capable of delivering a maximum output power of 400 μW when subjected to a temperature difference of 300 K. This demonstrates its outstanding high-temperature heat harvesting capability and promising application prospects for real-time temperature monitoring on industrial high-temperature pipelines. Moreover, the designed self-powered wearable sensing glove can realize precise wide-range temperature detection, high-temperature warning and accurate recognition of human hand gestures. The aerogel-based intelligent wearable sensing system developed for firefighters demonstrates the desired self-powered and highly sensitive high-temperature fire warning capability. Benefitting from these desirable properties, the elastic and high-temperature-resistant aerogels present various promising applications including self-powered high-temperature monitoring, industrial overheat warning, waste heat energy recycling and even wearable healthcare.

    Mar. 11, 2024
  • Vol. 16 Issue 1 151 (2024)
  • Yaqi Geng, Guoyin Chen, Ran Cao, Hongmei Dai, Zexu Hu, Senlong Yu, Le Wang, Liping Zhu, Hengxue Xiang, and Meifang Zhu

    The thermoregulating function of skin that is capable of maintaining body temperature within a thermostatic state is critical. However, patients suffering from skin damage are struggling with the surrounding scene and situational awareness. Here, we report an interactive self-regulation electronic system by mimicking the human thermos-reception system. The skin-inspired self-adaptive system is composed of two highly sensitive thermistors (thermal-response composite materials), and a low-power temperature control unit (Laser-induced graphene array). The biomimetic skin can realize self-adjusting in the range of 35–42 °C, which is around physiological temperature. This thermoregulation system also contributed to skin barrier formation and wound healing. Across wound models, the treatment group healed ~ 10% more rapidly compared with the control group, and showed reduced inflammation, thus enhancing skin tissue regeneration. The skin-inspired self-adaptive system holds substantial promise for next-generation robotic and medical devices.

    Mar. 11, 2024
  • Vol. 16 Issue 1 152 (2024)
  • Shidong Xue, Guanghan Huang, Qing Chen, Xungai Wang, Jintu Fan, and Dahua Shou

    Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being. By merely broadening the set-point of indoor temperatures, we could significantly slash energy usage in building heating, ventilation, and air-conditioning systems. In recent years, there has been a surge in advancements in personal thermal management (PTM), aiming to regulate heat and moisture transfer within our immediate surroundings, clothing, and skin. The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering. An emerging research area in PTM is personal radiative thermal management (PRTM), which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation. However, it is less taken into account in traditional textiles, and there currently lies a gap in our knowledge and understanding of PRTM. In this review, we aim to present a thorough analysis of advanced textile materials and technologies for PRTM. Specifically, we will introduce and discuss the underlying radiation heat transfer mechanisms, fabrication methods of textiles, and various indoor/outdoor applications in light of their different regulation functionalities, including radiative cooling, radiative heating, and dual-mode thermoregulation. Furthermore, we will shine a light on the current hurdles, propose potential strategies, and delve into future technology trends for PRTM with an emphasis on functionalities and applications.

    Mar. 13, 2024
  • Vol. 16 Issue 1 153 (2024)
  • Yiding Li, Li Wang, Youzhi Song, Wenwei Wang, Cheng Lin, and Xiangming He

    The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist. Now the battery is still a “black box”, thus requiring a deep understanding of its internal state. The battery should “sense its internal physical/chemical conditions”, which puts strict requirements on embedded sensing parts. This paper summarizes the application of advanced optical fiber sensors in lithium-ion batteries and energy storage technologies that may be mass deployed, focuses on the insights of advanced optical fiber sensors into the processes of one-dimensional nano–micro-level battery material structural phase transition, electrolyte degradation, electrode–electrolyte interface dynamics to three-dimensional macro-safety evolution. The paper contributes to understanding how to use optical fiber sensors to achieve “real” and “embedded” monitoring. Through the inherent advantages of the advanced optical fiber sensor, it helps clarify the battery internal state and reaction mechanism, aiding in the establishment of more detailed models. These advancements can promote the development of smart batteries, with significant importance lying in essentially promoting the improvement of system consistency. Furthermore, with the help of smart batteries in the future, the importance of consistency can be weakened or even eliminated. The application of advanced optical fiber sensors helps comprehensively improve the battery quality, reliability, and life.

    Mar. 18, 2024
  • Vol. 16 Issue 1 154 (2024)
  • Bin Wang, and Yuan Lu

    Molecular machines are key to cellular activity where they are involved in converting chemical and light energy into efficient mechanical work. During the last 60 years, designing molecular structures capable of generating unidirectional mechanical motion at the nanoscale has been the topic of intense research. Effective progress has been made, attributed to advances in various fields such as supramolecular chemistry, biology and nanotechnology, and informatics. However, individual molecular machines are only capable of producing nanometer work and generally have only a single functionality. In order to address these problems, collective behaviors realized by integrating several or more of these individual mechanical units in space and time have become a new paradigm. In this review, we comprehensively discuss recent developments in the collective behaviors of molecular machines. In particular, collective behavior is divided into two paradigms. One is the appropriate integration of molecular machines to efficiently amplify molecular motions and deformations to construct novel functional materials. The other is the construction of swarming modes at the supramolecular level to perform nanoscale or microscale operations. We discuss design strategies for both modes and focus on the modulation of features and properties. Subsequently, in order to address existing challenges, the idea of transferring experience gained in the field of micro/nano robotics is presented, offering prospects for future developments in the collective behavior of molecular machines.

    Mar. 18, 2024
  • Vol. 16 Issue 1 155 (2024)
  • Xi Zhou, Quan Zhou, Zhaozhi He, Yi Xiao, Yan Liu, Zhuohang Huang, Yaoji Sun, Jiawei Wang, Zhengdong Zhao, Xiaozhou Liu, Bin Zhou, Lei Ren, Yu Sun, Zhiwei Chen, and Xingcai Zhang

    Reactive oxygen species (ROS) plays important roles in living organisms. While ROS is a double-edged sword, which can eliminate drug-resistant bacteria, but excessive levels can cause oxidative damage to cells. A core–shell nanozyme, CeO2@ZIF-8/Au, has been crafted, spontaneously activating both ROS generating and scavenging functions, achieving the multi-faceted functions of eliminating bacteria, reducing inflammation, and promoting wound healing. The Au Nanoparticles (NPs) on the shell exhibit high-efficiency peroxidase-like activity, producing ROS to kill bacteria. Meanwhile, the encapsulation of CeO2 core within ZIF-8 provides a seal for temporarily limiting the superoxide dismutase and catalase-like activities of CeO2 nanoparticles. Subsequently, as the ZIF-8 structure decomposes in the acidic microenvironment, the CeO2 core is gradually released, exerting its ROS scavenging activity to eliminate excess ROS produced by the Au NPs. These two functions automatically and continuously regulate the balance of ROS levels, ultimately achieving the function of killing bacteria, reducing inflammation, and promoting wound healing. Such innovative ROS spontaneous regulators hold immense potential for revolutionizing the field of antibacterial agents and therapies.

    Mar. 21, 2024
  • Vol. 16 Issue 1 156 (2024)
  • Ximeng Liu, Dan Zhao, and John Wang

    Metal–organic framework (MOF) and covalent organic framework (COF) are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features, such as large surface area, tunable pore size, and functional surfaces, which have significant values in various application areas. The emerging 3D printing technology further provides MOF and COFs (M/COFs) with higher designability of their macrostructure and demonstrates large achievements in their performance by shaping them into advanced 3D monoliths. However, the currently available 3D printing M/COFs strategy faces a major challenge of severe destruction of M/COFs’ microstructural features, both during and after 3D printing. It is envisioned that preserving the microstructure of M/COFs in the 3D-printed monolith will bring a great improvement to the related applications. In this overview, the 3D-printed M/COFs are categorized into M/COF-mixed monoliths and M/COF-covered monoliths. Their differences in the properties, applications, and current research states are discussed. The up-to-date advancements in paste/scaffold composition and printing/covering methods to preserve the superior M/COF microstructure during 3D printing are further discussed for the two types of 3D-printed M/COF. Throughout the analysis of the current states of 3D-printed M/COFs, the expected future research direction to achieve a highly preserved microstructure in the 3D monolith is proposed.

    Mar. 21, 2024
  • Vol. 16 Issue 1 157 (2024)
  • Meng Lian, Wei Ding, Song Liu, Yufeng Wang, Tianyi Zhu, Yue-E. Miao, Chao Zhang, and Tianxi Liu

    Mar. 21, 2024
  • Vol. 16 Issue 1 158 (2024)
  • Leqi Lei, Shuo Meng, Yifan Si, Shuo Shi, Hanbai Wu, Jieqiong Yang, and Jinlian Hu

    Thermoregulatory textiles, leveraging high-emissivity structural materials, have arisen as a promising candidate for personal cooling management; however, their advancement has been hindered by the underperformed water moisture transportation capacity, which impacts on their thermophysiological comfort. Herein, we designed a wettability-gradient-induced-diode (WGID) membrane achieving by MXene-engineered electrospun technology, which could facilitate heat dissipation and moisture-wicking transportation. As a result, the obtained WGID membrane could obtain a cooling temperature of 1.5 °C in the “dry” state, and 7.1 °C in the “wet” state, which was ascribed to its high emissivity of 96.40% in the MIR range, superior thermal conductivity of 0.3349 W m-1 K-1 (based on radiation- and conduction-controlled mechanisms), and unidirectional moisture transportation property. The proposed design offers an approach for meticulously engineering electrospun membranes with enhanced heat dissipation and moisture transportation, thereby paving the way for developing more efficient and comfortable thermoregulatory textiles in a high-humidity microenvironment.

    Mar. 21, 2024
  • Vol. 16 Issue 1 159 (2024)
  • Li Ren, Yinghui Li, Zi Li, Xi Lin, Chong Lu, Wenjiang Ding, and Jianxin Zou

    MgH2 is a promising high-capacity solid-state hydrogen storage material, while its application is greatly hindered by the high desorption temperature and sluggish kinetics. Herein, intertwined 2D oxygen vacancy-rich V2O5 nanosheets (H-V2O5) are specifically designed and used as catalysts to improve the hydrogen storage properties of MgH2. The as-prepared MgH2-H-V2O5 composites exhibit low desorption temperatures (Tonset = 185 °C) with a hydrogen capacity of 6.54 wt%, fast kinetics (Ea = 84.55 ± 1.37 kJ mol-1 H2 for desorption), and long cycling stability. Impressively, hydrogen absorption can be achieved at a temperature as low as 30 °C with a capacity of 2.38 wt% within 60 min. Moreover, the composites maintain a capacity retention rate of ~ 99% after 100 cycles at 275 °C. Experimental studies and theoretical calculations demonstrate that the in-situ formed VH2/V catalysts, unique 2D structure of H-V2O5 nanosheets, and abundant oxygen vacancies positively contribute to the improved hydrogen sorption properties. Notably, the existence of oxygen vacancies plays a double role, which could not only directly accelerate the hydrogen ab/de-sorption rate of MgH2, but also indirectly affect the activity of the catalytic phase VH2/V, thereby further boosting the hydrogen storage performance of MgH2. This work highlights an oxygen vacancy excited “hydrogen pump” effect of VH2/V on the hydrogen sorption of Mg/MgH2. The strategy developed here may pave a new way toward the development of oxygen vacancy-rich transition metal oxides catalyzed hydride systems.

    Mar. 21, 2024
  • Vol. 16 Issue 1 160 (2024)
  • Shuilin Wu, Yibing Yang, Mingzi Sun, Tian Zhang, Shaozhuan Huang, Daohong Zhang, Bolong Huang, Pengfei Wang, and Wenjun Zhang

    With the merits of the high energy density of batteries and power density of supercapacitors, the aqueous Zn-ion hybrid supercapacitors emerge as a promising candidate for applications where both rapid energy delivery and moderate energy storage are required. However, the narrow electrochemical window of aqueous electrolytes induces severe side reactions on the Zn metal anode and shortens its lifespan. It also limits the operation voltage and energy density of the Zn-ion hybrid supercapacitors. Using ‘water in salt’ electrolytes can effectively broaden their electrochemical windows, but this is at the expense of high cost, low ionic conductivity, and narrow temperature compatibility, compromising the electrochemical performance of the Zn-ion hybrid supercapacitors. Thus, designing a new electrolyte to balance these factors towards high-performance Zn-ion hybrid supercapacitors is urgent and necessary. We developed a dilute water/acetonitrile electrolyte (0.5 m Zn(CF3SO3)2 + 1 m LiTFSI-H2O/AN) for Zn-ion hybrid supercapacitors, which simultaneously exhibited expanded electrochemical window, decent ionic conductivity, and broad temperature compatibility. In this electrolyte, the hydration shells and hydrogen bonds are significantly modulated by the acetonitrile and TFSI- anions. As a result, a Zn-ion hybrid supercapacitor with such an electrolyte demonstrates a high operating voltage up to 2.2 V and long lifespan beyond 120,000 cycles.

    Mar. 25, 2024
  • Vol. 16 Issue 1 161 (2024)
  • Yunnan Gao, Ling Liu, Yi Jiang, Dexin Yu, Xiaomei Zheng, Jiayi Wang, Jingwei Liu, Dan Luo, Yongguang Zhang, Zhenjia Shi, Xin Wang, Ya-Ping Deng, and Zhongwei Chen

    Zinc–air batteries (ZABs) are promising energy storage systems because of high theoretical energy density, safety, low cost, and abundance of zinc. However, the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs. Therefore, feasible and advanced non-noble-metal electrocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction. In this review, we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field. Then, we discussed the working mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design, crystal structure tuning, interface strategy, and atomic engineering. We also included theoretical studies, machine learning, and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions. Finally, we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.

    Mar. 26, 2024
  • Vol. 16 Issue 1 162 (2024)
  • Xuan Wang, Akang Chen, XinLei Wu, Jiatao Zhang, Jichen Dong, and Leining Zhang

    In recent years, low-dimensional transition metal chalcogenide (TMC) materials have garnered growing research attention due to their superior electronic, optical, and catalytic properties compared to their bulk counterparts. The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications. In this context, the atomic substitution method has emerged as a favorable approach. It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely, crystal structures, and inherent properties of the resulting materials. In this review, we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional, one-dimensional and two-dimensional TMC materials. The effects of substituting elements, substitution ratios, and substitution positions on the structures and morphologies of resulting material are discussed. The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided, emphasizing the role of atomic substitution in achieving these advancements. Finally, challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.

    Mar. 28, 2024
  • Vol. 16 Issue 1 163 (2024)
  • Anbin Zhou, Huirong Wang, Fengling Zhang, Xin Hu, Zhihang Song, Yi Chen, Yongxin Huang, Yanhua Cui, Yixiu Cui, Li Li, Feng Wu, and Renjie Chen

    Aqueous Zn2+-ion batteries (AZIBs), recognized for their high security, reliability, and cost efficiency, have garnered considerable attention. However, the prevalent issues of dendrite growth and parasitic reactions at the Zn electrode interface significantly impede their practical application. In this study, we introduced a ubiquitous biomolecule of phenylalanine (Phe) into the electrolyte as a multifunctional additive to improve the reversibility of the Zn anode. Leveraging its exceptional nucleophilic characteristics, Phe molecules tend to coordinate with Zn2+ ions for optimizing the solvation environment. Simultaneously, the distinctive lipophilicity of aromatic amino acids empowers Phe with a higher adsorption energy, enabling the construction of a multifunctional protective interphase. The hydrophobic benzene ring ligands act as cleaners for repelling H2O molecules, while the hydrophilic hydroxyl and carboxyl groups attract Zn2+ ions for homogenizing Zn2+ flux. Moreover, the preferential reduction of Phe molecules prior to H2O facilitates the in situ formation of an organic–inorganic hybrid solid electrolyte interphase, enhancing the interfacial stability of the Zn anode. Consequently, Zn||Zn cells display improved reversibility, achieving an extended cycle life of 5250 h. Additionally, Zn||LMO full cells exhibit enhanced cyclability of retaining 77.3% capacity after 300 cycles, demonstrating substantial potential in advancing the commercialization of AZIBs.

    Mar. 28, 2024
  • Vol. 16 Issue 1 164 (2024)
  • Shaodian Yang, Zhiqiang Lin, Ximiao Wang, Junhua Huang, Rongliang Yang, Zibo Chen, Yi Jia, Zhiping Zeng, Zhaolong Cao, Hongjia Zhu, Yougen Hu, Enen Li, Huanjun Chen, Tianwu Wang, Shaozhi Deng, and Xuchun Gui

    With the increasing demand for terahertz (THz) technology in security inspection, medical imaging, and flexible electronics, there is a significant need for stretchable and transparent THz electromagnetic interference (EMI) shielding materials. Existing EMI shielding materials, like opaque metals and carbon-based films, face challenges in achieving both high transparency and high shielding efficiency (SE). Here, a wrinkled structure strategy was proposed to construct ultra-thin, stretchable, and transparent terahertz shielding MXene films, which possesses both isotropous wrinkles (height about 50 nm) and periodic wrinkles (height about 500 nm). Compared to flat film, the wrinkled MXene film (8 nm) demonstrates a remarkable 36.5% increase in SE within the THz band. The wrinkled MXene film exhibits an EMI SE of 21.1 dB at the thickness of 100 nm, and an average EMI SE/t of 700 dB μm-1 over the 0.1–10 THz. Theoretical calculations suggest that the wrinkled structure enhances the film's conductivity and surface plasmon resonances, resulting in an improved THz wave absorption. Additionally, the wrinkled structure enhances the MXene films' stretchability and stability. After bending and stretching (at 30% strain) cycles, the average THz transmittance of the wrinkled film is only 0.5% and 2.4%, respectively. The outstanding performances of the wrinkled MXene film make it a promising THz electromagnetic shielding materials for future smart windows and wearable electronics.

    Apr. 02, 2024
  • Vol. 16 Issue 1 165 (2024)
  • Yanhong Zhang, Liang Chu, and Wenjun Li

    Apr. 02, 2024
  • Vol. 16 Issue 1 166 (2024)
  • Lixue Gai, Yahui Wang, Pan Wan, Shuping Yu, Yongzheng Chen, Xijiang Han, Ping Xu, and Yunchen Du

    Microwave absorbing materials (MAMs) characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications. Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions, while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals. Herein, we have successfully implemented compositional and structural engineering to fabricate hollow SiC/C microspheres with controllable composition. The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites. The formation of hollow structure not only favors lightweight feature, but also generates considerable contribution to microwave attenuation capacity. With the synergistic effect of composition and structure, the optimized SiC/C composite exhibits excellent performance, whose the strongest reflection loss intensity and broadest effective absorption reach - 60.8 dB and 5.1 GHz, respectively, and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies. In addition, the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.

    Apr. 02, 2024
  • Vol. 16 Issue 1 167 (2024)
  • Cuiping Li, Dan Li, Shuai Zhang, Long Ma, Lei Zhang, Jingwei Zhang, and Chunhong Gong

    Currently, the microwave absorbers usually suffer dreadful electromagnetic wave absorption (EMWA) performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss. Consequently, the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority. Herein, due to the high melting point, good electrical conductivity, excellent environmental stability, EM coupling effect, and abundant interfaces of titanium nitride (TiN) nanotubes, they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process. Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane (PDMS), enhanced polarization loss relaxations were created, which could not only improve the depletion efficiency of EMWA, but also contribute to the optimized impedance matching at elevated temperature. Therefore, the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature (298–573 K), while achieved an effective absorption bandwidth (EAB) value of 3.23 GHz and a minimum reflection loss (RLmin) value of - 44.15 dB at 423 K. This study not only clarifies the relationship between dielectric loss capacity (conduction loss and polarization loss) and temperature, but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.

    Apr. 04, 2024
  • Vol. 16 Issue 1 168 (2024)
  • Tian Mai, Lei Chen, Pei-Lin Wang, Qi Liu, and Ming-Guo Ma

    With the continuous advancement of communication technology, the escalating demand for electromagnetic shielding interference (EMI) materials with multifunctional and wideband EMI performance has become urgent. Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest, but remain a huge challenge. Herein, we reported the alternating electromagnetic structure composite films composed of hollow metal–organic frameworks/layered MXene/nanocellulose (HMN) by alternating vacuum-assisted filtration process. The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency (66.8 dB at Ka-band) and THz frequency (114.6 dB at 0.1–4.0 THz). Besides, the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz. Moreover, HMN composite films show remarkable photothermal conversion performance, which can reach 104.6 °C under 2.0 Sun and 235.4 °C under 0.8 W cm-2, respectively. The unique micro- and macro-structural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect. These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.

    Apr. 08, 2024
  • Vol. 16 Issue 1 169 (2024)
  • Guoli Du, Yuzheng Shao, Bin Luo, Tao Liu, Jiamin Zhao, Ying Qin, Jinlong Wang, Song Zhang, Mingchao Chi, Cong Gao, Yanhua Liu, Chenchen Cai, Shuangfei Wang, and Shuangxi Nie

    Rapid advancements in flexible electronics technology propel soft tactile sensing devices toward high-level biointegration, even attaining tactile perception capabilities surpassing human skin. However, the inherent mechanical mismatch resulting from deficient biomimetic mechanical properties of sensing materials poses a challenge to the application of wearable tactile sensing devices in human–machine interaction. Inspired by the innate biphasic structure of human subcutaneous tissue, this study discloses a skin-compliant wearable iontronic triboelectric gel via phase separation induced by competitive hydrogen bonding. Solvent-nonsolvent interactions are used to construct competitive hydrogen bonding systems to trigger phase separation, and the resulting soft-hard alternating phase-locked structure confers the iontronic triboelectric gel with Young's modulus (6.8–281.9 kPa) and high tensile properties (880%) compatible with human skin. The abundance of reactive hydroxyl groups gives the gel excellent tribopositive and self-adhesive properties (peel strength > 70 N m-1). The self-powered tactile sensing skin based on this gel maintains favorable interface and mechanical stability with the working object, which greatly ensures the high fidelity and reliability of soft tactile sensing signals. This strategy, enabling skin-compliant design and broad dynamic tunability of the mechanical properties of sensing materials, presents a universal platform for broad applications from soft robots to wearable electronics.

    Apr. 09, 2024
  • Vol. 16 Issue 1 170 (2024)
  • Yayu Dong, Jian Zhang, Hongyu Zhang, Wei Wang, Boyuan Hu, Debin Xia, Kaifeng Lin, Lin Geng, and Yulin Yang

    Although covalent organic frameworks (COFs) with high π-conjugation have recently exhibited great prospects in perovskite solar cells (PSCs), their further application in PSCs is still hindered by face-to-face stacking and aggregation issues. Herein, metal–organic framework (MOF-808) is selected as an ideal platform for the in situ homogeneous growth of a COF to construct a core–shell MOF@COF nanoparticle, which could effectively inhibit COF stacking and aggregation. The synergistic intrinsic mechanisms induced by the MOF@COF nanoparticles for reinforcing intrinsic stability and mitigating lead leakage in PSCs have been explored. The complementary utilization of π-conjugated skeletons and nanopores could optimize the crystallization of large-grained perovskite films and eliminate defects. The resulting PSCs achieve an impressive power conversion efficiency of 23.61% with superior open circuit voltage (1.20 V) and maintained approximately 90% of the original power conversion efficiency after 2000 h (30–50% RH and 25–30 °C). Benefiting from the synergistic effects of the in situ chemical fixation and adsorption abilities of the MOF@COF nanoparticles, the amount of lead leakage from unpackaged PSCs soaked in water (< 5 ppm) satisfies the laboratory assessment required for the Resource Conservation and Recovery Act Regulation.

    Apr. 11, 2024
  • Vol. 16 Issue 1 171 (2024)
  • Birhanu Bayissa Gicha, Lemma Teshome Tufa, Njemuwa Nwaji, Xiaojun Hu, and Jaebeom Lee

    Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies. Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward achieving commercial feasibility. In particular, all-solid-state lithium–sulfur batteries (ASSLSBs) that rely on lithium–sulfur reversible redox processes exhibit immense potential as an energy storage system, surpassing conventional lithium-ion batteries. This can be attributed predominantly to their exceptional energy density, extended operational lifespan, and heightened safety attributes. Despite these advantages, the adoption of ASSLSBs in the commercial sector has been sluggish. To expedite research and development in this particular area, this article provides a thorough review of the current state of ASSLSBs. We delve into an in-depth analysis of the rationale behind transitioning to ASSLSBs, explore the fundamental scientific principles involved, and provide a comprehensive evaluation of the main challenges faced by ASSLSBs. We suggest that future research in this field should prioritize plummeting the presence of inactive substances, adopting electrodes with optimum performance, minimizing interfacial resistance, and designing a scalable fabrication approach to facilitate the commercialization of ASSLSBs.

    Apr. 15, 2024
  • Vol. 16 Issue 1 172 (2024)
  • Ting-Ting Liu, Qi Zheng, Wen-Qiang Cao, Yu-Ze Wang, Min Zhang, Quan-Liang Zhao, and Mao-Sheng Cao

    With the diversified development of big data, detection and precision guidance technologies, electromagnetic (EM) functional materials and devices serving multiple spectrums have become a hot topic. Exploring the multispectral response of materials is a challenging and meaningful scientific question. In this study, MXene/TiO2 hybrids with tunable conduction loss and polarization relaxation are fabricated by in situ atomic reconstruction engineering. More importantly, MXene/TiO2 hybrids exhibit adjustable spectral responses in the GHz, infrared and visible spectrums, and several EM devices are constructed based on this. An antenna array provides excellent EM energy harvesting in multiple microwave bands, with |S11| up to - 63.2 dB, and can be tuned by the degree of bending. An ultra-wideband bandpass filter realizes a passband of about 5.4 GHz and effectively suppresses the transmission of EM signals in the stopband. An infrared stealth device has an emissivity of less than 0.2 in the infrared spectrum at wavelengths of 6–14 µm. This work can provide new inspiration for the design and development of multifunctional, multi-spectrum EM devices.

    Apr. 15, 2024
  • Vol. 16 Issue 1 173 (2024)
  • Xianyuan Liu, Jinman Zhou, Ying Xue, and Xianyong Lu

    Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention, yet encounter significant challenges. Developing new materials and innovative structural design concepts is crucial for expanding the application field of electromagnetic wave absorption. Particularly, hierarchical structure engineering has emerged as a promising approach to enhance the physical and chemical properties of materials, providing immense potential for creating versatile electromagnetic wave absorption materials. Herein, an exceptional multi-dimensional hierarchical structure was meticulously devised, unleashing the full microwave attenuation capabilities through in situ growth, self-reduction, and multi-heterogeneous interface integration. The hierarchical structure features a three-dimensional carbon framework, where magnetic nanoparticles grow in situ on the carbon skeleton, creating a necklace-like structure. Furthermore, magnetic nanosheets assemble within this framework. Enhanced impedance matching was achieved by precisely adjusting component proportions, and intelligent integration of diverse interfaces bolstered dielectric polarization. The obtain Fe3O4-Fe nanoparticles/carbon nanofibers/Al-Fe3O4-Fe nanosheets composites demonstrated outstanding performance with a minimum reflection loss (RLmin) value of - 59.3 dB and an effective absorption bandwidth (RL ≤ - 10 dB) extending up to 5.6 GHz at 2.2 mm. These notable accomplishments offer fresh insights into the precision design of high-efficient electromagnetic wave absorption materials.

    Apr. 15, 2024
  • Vol. 16 Issue 1 174 (2024)
  • Fan He, Yingnan Liu, Xiaoxuan Yang, Yaqi Chen, Cheng-Chieh Yang, Chung-Li Dong, Qinggang He, Bin Yang, Zhongjian Li, Yongbo Kuang, Lecheng Lei, Liming Dai, and Yang Hou

    Metal–organic frameworks (MOFs) have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity, but the limited catalytic activity and stability has hampered their practical use in water splitting. Herein, we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs (donated as AE-CoNDA) to serve as efficient catalyst for water splitting. AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm-2 and a small Tafel slope of 62 mV dec-1 with excellent stability over 100 h. After integrated AE-CoNDA onto BiVO4, photocurrent density of 4.3 mA cm-2 is achieved at 1.23 V. Experimental investigations demonstrate that the stretched Co–O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p, which accounts for the fast kinetics and high activity. Theoretical calculations reveal that the stretched Co–O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.

    Apr. 19, 2024
  • Vol. 16 Issue 1 175 (2024)
  • Chuyang Liu, Lu Xu, Xueyu Xiang, Yujing Zhang, Li Zhou, Bo Ouyang, Fan Wu, Dong-Hyun Kim, and Guangbin Ji

    The utilization of electromagnetic waves is rapidly advancing into the millimeter-wave frequency range, posing increasingly severe challenges in terms of electromagnetic pollution prevention and radar stealth. However, existing millimeter-wave absorbers are still inadequate in addressing these issues due to their monotonous magnetic resonance pattern. In this work, rare-earth La3+ and non-magnetic Zr4+ ions are simultaneously incorporated into M-type barium ferrite (BaM) to intentionally manipulate the multi-magnetic resonance behavior. By leveraging the contrary impact of La3+ and Zr4+ ions on magnetocrystalline anisotropy field, the restrictive relationship between intensity and frequency of the multi-magnetic resonance is successfully eliminated. The magnetic resonance peak-differentiating and imitating results confirm that significant multi-magnetic resonance phenomenon emerges around 35 GHz due to the reinforced exchange coupling effect between Fe3+ and Fe2+ ions. Additionally, Mössbauer spectra analysis, first-principle calculations, and least square fitting collectively identify that additional La3+ doping leads to a profound rearrangement of Zr4+ occupation and thus makes the portion of polarization/conduction loss increase gradually. As a consequence, the La3+–Zr4+ co-doped BaM achieves an ultra-broad bandwidth of 12.5 + GHz covering from 27.5 to 40 + GHz, which holds remarkable potential for millimeter-wave absorbers around the atmospheric window of 35 GHz.

    Apr. 22, 2024
  • Vol. 16 Issue 1 176 (2024)
  • Na Yu, Idris Temitope Bello, Xi Chen, Tong Liu, Zheng Li, Yufei Song, and Meng Ni

    Reversible protonic ceramic cells (RePCCs) hold promise for efficient energy storage, but their practicality is hindered by a lack of high-performance air electrode materials. Ruddlesden–Popper perovskite Sr3Fe2O7-δ (SF) exhibits superior proton uptake and rapid ionic conduction, boosting activity. However, excessive proton uptake during RePCC operation degrades SF’s crystal structure, impacting durability. This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes, incorporating Sr-deficiency and Nb-substitution to create Sr2.8Fe1.8Nb0.2O7-δ (D-SFN). Nb stabilizes SF's crystal, curbing excessive phase formation, and Sr-deficiency boosts oxygen vacancy concentration, optimizing oxygen transport. The D-SFN electrode demonstrates outstanding activity and durability, achieving a peak power density of 596 mW cm-2 in fuel cell mode and a current density of - 1.19 A cm-2 in electrolysis mode at 1.3 V, 650 °C, with excellent cycling durability. This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage.

    Apr. 22, 2024
  • Vol. 16 Issue 1 177 (2024)
  • Please enter the answer below before you can view the full text.
    5+4=
    Submit