Photonics Research
Co-Editors-in-Chief
Lan Yang

Special issue on non-Hermitian photonics in complex media: PT-symmetry and beyond.

Weijian Chen, Jing Zhang, Bo Peng, Şahin Kaya Özdemir, Xudong Fan, and Lan Yang

We present a study of single nanoparticle detection using parity-time (PT) symmetric whispering-gallery mode (WGM) resonators. Our theoretical model and numerical simulations show that, with balanced gain and loss, the PT-symmetric WGM nanoparticle sensor, tailored to operate at PT phase transition points (also called exceptional points), exhibits significant enhancement in frequency splitting when compared with a single WGM nanoparticle sensor subject to the same perturbation. The presence of gain in the PT-symmetric system leads to narrower linewidth, which helps to resolve smaller changes in frequency splitting and improve the detection limit of nanoparticle sensing. Furthermore, we also provide a general method for detecting multiple nanoparticles entering the mode volume of a PT-symmetric WGM sensor one by one. Our study shows the feasibility of PT-symmetric WGM resonators for ultrasensitive single nanoparticle and biomolecule sensing.

Photonics Research
Apr. 04, 2018
  • Vol. 6 Issue 5 A23 (2018)
  • D. J. Nodal Stevens, Benjamín Jaramillo Ávila, and B. M. Rodríguez-Lara

    We study light propagation through cyclic arrays, composed by copies of a given PT-symmetric dimer, using a group theoretical approach and finite element modeling. The theoretical mode-coupling analysis suggests the use of these devices as output port replicators where the dynamics is controlled by the impinging light field. This is confirmed in good agreement with finite element propagation in an experimentally feasible necklace of passive PT-symmetric dimers constructed from lossy and lossless waveguides.

    Photonics Research
    Apr. 04, 2018
  • Vol. 6 Issue 5 A31 (2018)
  • Ziyao Feng, Jingwen Ma, Zejie Yu, and Xiankai Sun

    Parity–time (PT) symmetry has been demonstrated in the frame of classic optics. Its applications in laser science have resulted in unconventional control and manipulation of resonant modes. PT-symmetric periodic circular Bragg lasers were previously proposed. Analyses with a transfer-matrix method have shown their superior properties of reduced threshold and enhanced modal discrimination between the radial modes. However, the properties of the azimuthal modes were not analyzed, which restricts further development of circular Bragg lasers. Here, we adopt the coupled-mode theory to design and analyze chirped circular Bragg lasers with radial PT symmetry. The new structures possess more versatile modal control with further enhanced modal discrimination between the azimuthal modes. We also analyze azimuthally modulated circular Bragg lasers with radial PT symmetry, which are shown to achieve even higher modal discrimination.

    Photonics Research
    Apr. 11, 2018
  • Vol. 6 Issue 5 A38 (2018)
  • Greg Gbur, and Konstantinos Makris

    This special issue is dedicated to the emerging field of non-Hermitian photonics of complex media, with emphasis on PT-symmetric optical structures. In particular, the papers highlight the variety of applications being considered and the ways in which non-Hermitian optics can improve their performance.

    Photonics Research
    May. 01, 2018
  • Vol. 6 Issue 5 PTS1 (2018)
  • Andres D. Neira, Gregory A. Wurtz, and Anatoly V. Zayats

    Strong nonlinearity of plasmonic metamaterials can be designed near their effective plasma frequency in the epsilon-near-zero (ENZ) regime. We explore the realization of an all-optical modulator based on the Au nonlinearity using an ENZ cavity formed by a few Au nanorods inside a Si photonic waveguide. The resulting modulator has robust performance with a modulation depth of about 30 dB/μm and loss less than 0.8 dB for switching energies below 600 fJ. The modulator provides a double advantage of high mode transmission and strong nonlinearity enhancement in the few-nanorod-based design.

    Photonics Research
    Mar. 27, 2018
  • Vol. 6 Issue 5 B1 (2018)
  • Ming Li, Lin Zhang, Li-Min Tong, and Dao-Xin Dai

    Nonlinear silicon photonics has shown an ability to generate, manipulate, and detect optical signals on an ultracompact chip at a potential low cost. There are still barriers hindering its development due to essential material limitations. In this review, hybrid structures with some specific materials developed for nonlinear silicon photonics are discussed. The combination of silicon and the nonlinear materials takes advantage of both materials, which shows great potential to improve the performance and expand the applications for nonlinear silicon photonics.

    Photonics Research
    Apr. 11, 2018
  • Vol. 6 Issue 5 B13 (2018)
  • Francesco Da Ros, Andrzej Gajda, Erik Liebig, Edson P. da Silva, Anna Pęczek, Peter D. Girouard, Andreas Mai, Klaus Petermann, Lars Zimmermann, Michael Galili, and Leif K. Oxenløwe

    A polarization-diversity loop with a silicon waveguide with a lateral p-i-n diode as a nonlinear medium is used to realize polarization insensitive four-wave mixing. Wavelength conversion of seven dual-polarization 16-quadrature amplitude modulation (QAM) signals at 16 GBd is demonstrated with an optical signal-to-noise ratio penalty below 0.7 dB. High-quality converted signals are generated thanks to the low polarization dependence (≤0.5 dB) and the high conversion efficiency (CE) achievable. The strong Kerr nonlinearity in silicon and the decrease of detrimental free-carrier absorption due to the reverse-biased p-i-n diode are key in ensuring the high CE levels.

    Photonics Research
    Apr. 11, 2018
  • Vol. 6 Issue 5 B23 (2018)
  • Xingyuan Xu, Jiayang Wu, Thach G. Nguyen, Tania Moein, Sai T. Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss

    We demonstrate significantly improved performance of a microwave true time delay line based on an integrated optical frequency comb source. The broadband micro-comb (over 100 nm wide) features a record low free spectral range (FSR) of 49 GHz, resulting in an unprecedented record high channel number (81 over the C band)—the highest number of channels for an integrated comb source used for microwave signal processing. We theoretically analyze the performance of a phased array antenna and show that this large channel count results in a high angular resolution and wide beam-steering tunable range. This demonstrates the feasibility of our approach as a competitive solution toward implementing integrated photonic true time delays in radar and communications systems.

    Photonics Research
    Apr. 12, 2018
  • Vol. 6 Issue 5 B30 (2018)
  • Samuel Serna, Hongtao Lin, Carlos Alonso-Ramos, Anupama Yadav, Xavier Le Roux, Kathleen Richardson, Eric Cassan, Nicolas Dubreuil, Juejun Hu, and Laurent Vivien

    In this paper, we report the experimental characterization of highly nonlinear GeSbS chalcogenide glass waveguides. We used a single-beam characterization protocol that accounts for the magnitude and sign of the real and imaginary parts of the third-order nonlinear susceptibility of integrated Ge23Sb7S70 (GeSbS) chalcogenide glass waveguides in the near-infrared wavelength range at λ=1580 nm. We measured a waveguide nonlinear parameter of 7.0±0.7 W 1·m 1, which corresponds to a nonlinear refractive index of n2=(0.93±0.08)×10 18 m2/W, comparable to that of silicon, but with an 80 times lower two-photon absorption coefficient βTPA=(0.010±0.003) cm/GW, accompanied with linear propagation losses as low as 0.5 dB/cm. The outstanding linear and nonlinear properties of GeSbS, with a measured nonlinear figure of merit FOMTPA=6.0±1.4 at λ=1580 nm, ultimately make it one of the most promising integrated platforms for the realization of nonlinear functionalities.

    Photonics Research
    Apr. 13, 2018
  • Vol. 6 Issue 5 B37 (2018)
  • Aude Martin, Sylvain Combrié, Alfredo de Rossi, Grégoire Beaudoin, Isabelle Sagnes, and Fabrice Raineri

    We introduce a nanoscale photonic platform based on gallium phosphide. Owing to the favorable material properties, peak power intensity levels of 50 GW/cm2 are safely reached in a suspended membrane. Consequently, the field enhancement is exploited to a far greater extent to achieve efficient and strong light–matter interaction. As an example, parametric interactions are shown to reach a deeply nonlinear regime, revealing cascaded four-wave mixing leading to comb generation and high-order soliton dynamics.

    Photonics Research
    Apr. 13, 2018
  • Vol. 6 Issue 5 B43 (2018)
  • D. T. H. Tan, K. J. A. Ooi, and D. K. T. Ng

    CMOS platforms with a high nonlinear figure of merit are highly sought after for high photonic quantum efficiencies, enabling functionalities not possible from purely linear effects and ease of integration with CMOS electronics. Silicon-based platforms have been prolific amongst the suite of advanced nonlinear optical signal processes demonstrated to date. These include crystalline silicon, amorphous silicon, Hydex glass, and stoichiometric silicon nitride. Residing between stoichiometric silicon nitride and amorphous silicon in composition, silicon-rich nitride films of various formulations have emerged recently as promising nonlinear platforms for high nonlinear figure of merit nonlinear optics. Silicon-rich nitride films are compositionally engineered to create bandgaps that are sufficiently large to eliminate two-photon absorption at telecommunications wavelengths while enabling much larger nonlinear waveguide parameters (5x–500x) than those in stoichiometric silicon nitride. This paper reviews recent developments in the field of nonlinear optics using silicon-rich nitride platforms, as well as the outlook and future opportunities in this burgeoning field.

    Photonics Research
    Apr. 16, 2018
  • Vol. 6 Issue 5 B50 (2018)
  • Davide Rocco, Valerio F. Gili, Lavinia Ghirardini, Luca Carletti, Ivan Favero, Andrea Locatelli, Giuseppe Marino, Dragomir N. Neshev, Michele Celebrano, Marco Finazzi, Giuseppe Leo, and Costantino De Angelis

    Dielectric nanocavities are emerging as a versatile and powerful tool for the linear and nonlinear manipulation of light at the nanoscale. In this work, we exploit the effective coupling of electric and toroidal modes in AlGaAs nanodimers to locally enhance both electric and magnetic fields while minimizing the optical scattering, thereby optimizing their second-harmonic generation efficiency with respect to the case of a single isolated nanodisk. We also demonstrate that proper near-field coupling can provide further degrees of freedom to control the polarization state and the radiation diagram of the second-harmonic field.

    Photonics Research
    Apr. 11, 2018
  • Vol. 6 Issue 5 B6 (2018)
  • Hualong Bao, Andrew Cooper, Sai T. Chu, Dave J. Moss, Roberto Morandotti, Brent E. Little, Marco Peccianti, and Alessia Pasquazi

    We experimentally demonstrate the generation of highly coherent Type-II micro-combs based on a micro-resonator nested in a fiber cavity loop, known as the filter-driven four wave mixing (FD-FWM) laser scheme. In this system, the frequency spacing of the comb can be adjusted to integer multiples of the free-spectral range (FSR) of the nested micro-resonator by properly tuning the fiber cavity length. Sub-comb lines with single FSR spacing around the primary comb lines can be generated. Such a spectral emission is known as a “Type-II comb”. Our system achieves a fully coherent output. This behavior is verified by numerical simulations. This study represents an important step forward in controlling and manipulating the dynamics of an FD-FWM laser.

    Photonics Research
    Apr. 16, 2018
  • Vol. 6 Issue 5 B67 (2018)
  • David Allioux, Ali Belarouci, Darren Hudson, Eric Magi, Milan Sinobad, Guillaume Beaudin, Adrien Michon, Neetesh Singh, Regis Orobtchouk, and Christian Grillet

    We report the fabrication and characterization of silicon carbide microdisks on top of silicon pillars suited for applications from near- to mid-infrared. We probe 10 μm diameter disks with different under-etching depths, from 4 μm down to 1.4 μm, fabricated by isotropic plasma etching and extract quality factors up to 8400 at telecom wavelength. Our geometry is suited to present high Q single-mode operation. We experimentally demonstrate high-order whispering-gallery mode suppression while preserving the fundamental gallery mode and investigate some requirements for nonlinear optics applications on this platform, specifically in terms of quality factor and dispersion for Kerr frequency comb generation.

    Photonics Research
    Apr. 19, 2018
  • Vol. 6 Issue 5 B74 (2018)
  • Chawin Sitawarin, Weiliang Jin, Zin Lin, and Alejandro W. Rodriguez

    Typically, photonic waveguides designed for nonlinear frequency conversion rely on intuitive and established principles, including index guiding and bandgap engineering, and are based on simple shapes with high degrees of symmetry. We show that recently developed inverse-design techniques can be applied to discover new kinds of microstructured fibers and metasurfaces designed to achieve large nonlinear frequency-conversion efficiencies. As a proof of principle, we demonstrate complex, wavelength-scale chalcogenide glass fibers and gallium phosphide three-dimensional metasurfaces exhibiting some of the largest nonlinear conversion efficiencies predicted thus far, e.g., lowering the power requirement for third-harmonic generation by 104 and enhancing second-harmonic generation conversion efficiency by 107. Such enhancements arise because, in addition to enabling a great degree of tunability in the choice of design wavelengths, these optimization tools ensure both frequency- and phase-matching in addition to large nonlinear overlap factors.

    Photonics Research
    Apr. 20, 2018
  • Vol. 6 Issue 5 B82 (2018)
  • Eric Cassan, Christian Grillet, Dragomir N. Neshev, and David J. Moss

    The field of nonlinear photonics is in full development. This special issue of Photonics Research takes you through the current issues of this fast-growing field of research, drawing on the current state of the art and seeking, through a selection of articles, to outline some trends for the future.

    Photonics Research
    May. 01, 2018
  • Vol. 6 Issue 5 NIP1 (2018)
  • Integrated Optics
    Zhaosong Li, Dan Lu, Yiming He, Fangyuan Meng, Xuliang Zhou, and Jiaoqing Pan

    A monolithic integrated few-mode transmitter comprising of two directly modulated distributed feedback lasers and a multimode-interference-coupler-based mode converter-multiplexer with 66% mode conversion efficiency was designed and demonstrated. A fundamental TE0 mode and a first-order TE1 mode were successfully generated from the transmitter, with the output power of 4 and 5.5 mW at a pump current of around 150 mA, respectively, at the common output port. The small signal modulation bandwidth of the TE0 and TE1 channels reached 17.4 and 14.7 GHz, respectively. Error-free 2×10-Gbit/s direct modulation of the two-mode transmitter was demonstrated, with a power penalty of 4.3 dB between the TE0 mode and the TE1 mode at the bit error rate of 1×10 9.

    Apr. 20, 2018
  • Vol. 6 Issue 5 463 (2018)
  • Lasers and Laser Optics
    Hongbo Lu, Jian Xing, Cheng Wei, Jiangying Xia, Junqing Sha, Yunsheng Ding, Guobing Zhang, Kang Xie, Longzhen Qiu, and Zhijia Hu

    A band-gap-tailored random laser with a wide tunable range and low threshold through infrared radiation is demonstrated. When fluorescent dyes are doped into the liquid crystal and heavily doped chiral agent system, we demonstrate a wavelength tuning random laser instead of a side-band laser, which is caused by the combined effect of multi-scattering of liquid crystal (LC) and band-gap control. Through rotating the infrared absorbing material on the side of the LC cell, an adjustable range for random lasing of 80 nm by infrared light irradiation was observed.

    Apr. 18, 2018
  • Vol. 6 Issue 5 390 (2018)
  • Michael L. Davenport, Songtao Liu, and John E. Bowers

    The mode-locked laser diode has emerged as a promising candidate as a signal source for photonic radar systems, wireless data transmission, and frequency comb spectroscopy. They have the advantages of small size, low cost, high reliability, and low power consumption, thanks to semiconductor technology. Mode-locked lasers based on silicon photonics advance these qualities by the use of highly advanced silicon manufacturing technology. This paper will begin by giving an overview of mode-locked laser diode literature, and then focus on mode-locked lasers on silicon. The dependence of mode-locked laser performance on design details is presented.

    Apr. 20, 2018
  • Vol. 6 Issue 5 468 (2018)
  • Materials
    Zi-Lan Deng, Yaoyu Cao, Xiangping Li, and Guo Ping Wang

    We show that a metasurface composed of a subwavelength metallic slit array embedded in an asymmetric dielectric environment can exhibit either extraordinary optical transmission (EOT) or extraordinary optical diffraction (EOD). The cascaded refractive indices of the dielectrics can leverage multiple decaying passages into variant subsections with different diffraction order combinations according to the diffraction order chart in the k-vector space, providing a flexible mean to tailor resonance decaying pathways of the metallic slit cavity mode by changing the wavevector of the incident light. As a result, either the zeroth transmission or 1st reflection efficiencies can be enhanced to near unity by the excitation of the localized slit cavity mode, leading to either EOT or EOD in a single structure, depending on the illumination angle. Based on this appealing feature, a multifunctional metasurface that can switch its functionality between transmission filter, mirror, and off-axis lens is demonstrated. Our findings provide a convenient way to construct multifunctional miniaturized optical components on a single planar device.

    Apr. 23, 2018
  • Vol. 6 Issue 5 443 (2018)
  • Nonlinear Optics
    Weiqiang Wang, Wenfu Zhang, Zhizhou Lu, Sai T. Chu, Brent E. Little, Qinghua Yang, Lei Wang, and Wei Zhao

    Dual combs are an emerging tool to obtain unprecedented resolution, high sensitivity, ultrahigh accuracy, broad bandwidth, and ultrafast data updating rate in the fields of molecular spectroscopy, optical metrology, as well as optical frequency synthesis. The recent progress in chip-based microcombs has promoted the on-chip dual-comb measuring systems to a new phase attributed to the large frequency spacing and broad spectrum. In this paper, we demonstrate proof-of-concept dual-comb generation with orthogonal polarization in a single microresonator through pumping both the transverse-electric (TE) and transverse-magnetic (TM) modes simultaneously. The two orthogonal polarized pumps are self-oscillating in a fiber ring cavity. The generated dual comb exhibits excellent stability due to the intrinsic feedback mechanism of the self-locked scheme. The repetition rate of the two orthogonal combs is slightly different because of the mode spacing difference between the TE and TM modes. Such orthogonal polarized dual-combs could be a new comb source for out-of-lab applications in the fields of integrated spectroscopy, ranging measurement, optical frequency synthesis, and microwave comb generation.

    Apr. 13, 2018
  • Vol. 6 Issue 5 363 (2018)
  • Grzegorz Soboń, Tadeusz Martynkien, Dorota Tomaszewska, Karol Tarnowski, Paweł Mergo, and Jarosław Sotor

    We report an all-fiber, all-polarization maintaining (PM) source of widely tunable (1800–2000 nm) ultrashort pulses based on the amplification of coherent self-frequency-shifted solitons generated in a highly nonlinear fiber pumped with an Er-doped fiber laser. The system delivers sub-100 fs pulses with energies up to 8.6 nJ and is built entirely from PM optical fibers, without any free-space optics. The all-fiber alignment-free design significantly increases the suitability of such a source for field deployments.

    Apr. 18, 2018
  • Vol. 6 Issue 5 368 (2018)
  • Linyong Yang, Bin Zhang, Ke Yin, Tianyi Wu, Yijun Zhao, and Jing Hou

    A spectrally flat mid-infrared supercontinuum (MIR-SC) spanning 2.8–3.9 μm with a maximum output power of 411 mW was generated in a holmium-doped ZBLAN fiber amplifier (HDZFA). A broadband fiber-based SC covering the 2.4–3.2 μm region was designed to seed the amplifier. Benefiting from the broadband seed laser, the obtained SC had a high spectral flatness of 3 dB over the range of 2.93–3.70 μm (770 nm). A spectral integral showed that the SC power beyond 3 μm was 372 mW, i.e., a power ratio of 90.6% of the total power. This paper, to the best of our knowledge, not only demonstrates the first spectrally flat MIR-SC directly generated in fluoride fiber amplifiers, but also reports the highest power ratio beyond 3 μm obtained in rare-earth-doped fluoride fiber until now.

    Apr. 18, 2018
  • Vol. 6 Issue 5 417 (2018)
  • Plasmonics
    Chang Cheng, Juan Li, Hongxiang Lei, and Baojun Li

    Aggregation of metal nanoparticles plays an important role in surface enhanced Raman scattering (SERS). Here, a strategy of dynamically aggregating/releasing gold nanoparticles is demonstrated using a gold-nanofilm coated nanofiber, with the assistance of enhanced optical force and plasmonic photothermal effect. Strong SERS signals of rhodamine 6G are achieved at the hotspots formed in the inter-particle and film-particle nanogaps. The proposed SERS substrate was demonstrated to have a sensitivity of 10 12 M, reliable reproducibility, and good stability.

    Apr. 12, 2018
  • Vol. 6 Issue 5 357 (2018)
  • Yue Li, Jian Li, Taixing Huang, Fei Huang, Jun Qin, Lei Bi, Jianliang Xie, Longjiang Deng, and Bo Peng

    Although plasmonic nanostructure has attracted widespread research interest in recent years, it is still a major challenge to realize large-scale active plasmonic nanostructure operation in the visible optical frequency. Herein, we demonstrate a heterostructure geometry comprising a centimeter-scale Au nanoparticle monolayer and VO2 films, in which the plasmonic peak is inversely tuned between 685 nm and 618 nm by a heating process since the refractive index will change when VO2 films undergo the transition between the insulating phase and the metallic phase. Simultaneously, the phase transition of VO2 films can be improved by plasmonic arrays due to plasmonic enhanced light absorption and the photothermal effect. The phase transition temperature for Au/VO2 films is lower than that for bare VO2 films and can decrease to room temperature under the laser irradiation. For light-induced phase transition of VO2 films, the laser power of Au/VO2 film phase transition is ~28.6% lower than that of bare VO2 films. Our work raises the feasibility to use active plasmonic arrays in the visible region.

    Apr. 18, 2018
  • Vol. 6 Issue 5 409 (2018)
  • Polarization
    Shuiqin Zheng, Ying Li, Qinggang Lin, Xuanke Zeng, Guoliang Zheng, Yi Cai, Zhenkuan Chen, Shixiang Xu, and Dianyuan Fan

    This paper reports the experimental realization of efficiently sorting vector beams by polarization topological charge (PTC). The PTC of a vector beam can be defined as the repetition number of polarization state change along the azimuthal axis, while its sign stands for the rotating direction of the polarization. Here, a couple of liquid crystal Pancharatnam–Berry optical elements (PBOEs) have been used to introduce conjugated spatial phase modulations for two orthogonal circular polarization states. Applying these PBOEs in a 4-f optical system, our experiments show the setup can work for PTC sorting with a separation efficiency of more than 58%. This work provides an effective way to decode information from different PTCs, which may be interesting in many fields, especially in optical communication.

    Apr. 18, 2018
  • Vol. 6 Issue 5 385 (2018)
  • Jinqiu Zheng, Ao Yang, Teng Wang, Xianglong Zeng, Ning Cao, Mei Liu, Fufei Pang, and Tingyun Wang

    We experimentally demonstrated a method of generating continuously wavelength-switchable optical vortex beams (OVBs) in an all-fiber laser. A polarization-dependent microknot resonator (MKR) functions as comb filter and accounts for the narrow linewidth (0.018 nm) of multiwavelength channels. The wavelength interval corresponds to the free spectral range of the MKR. We exploit a fused SMF–FMF (single mode fiber–few mode fiber) mode coupler to obtain broadband mode conversion and successfully achieve multiwavelength switchable OVBs. As far as we know, this is the first report about identical multiwavelength vortex beams with topological charges of ±1. It has been verified that each channel of the vortex beams preserves the same orbital angular momentum (OAM) properties through their clear spiral interferograms. Multiwavelength vortex beams with identical OAM properties are desirable for multiplexing, exchanging, and routing to further improve the capacity of optical fiber transmission.

    Apr. 18, 2018
  • Vol. 6 Issue 5 396 (2018)
  • Jinwen Wang, Xin Yang, Yunke Li, Yun Chen, Mingtao Cao, Dong Wei, Hong Gao, and Fuli Li

    Vector beams with spatially variant polarization have attracted much attention in recent years, with potential applications in both classical optics and quantum optics. In this work, we study a polarization selection of spatial intensity distribution by utilizing a hybridly polarized beam as a coupling beam and a circularly polarized beam as a probe beam in Rb87 atom vapor. We experimentally observe that the spatial intensity distribution of the probe beam after passing through atoms can be modulated by the hybridly polarized beam due to the optical pumping effect. Then, the information loaded in the probe beam can be designedly filtrated by an atomic system with a high extinction ratio. A detailed process of the optical pumping effect in our configurations and the corresponding absorption spectra are presented to interpret our experimental results, which can be used for the spatial optical information locally extracted based on an atomic system, which has potential applications in quantum communication and computation.

    Apr. 23, 2018
  • Vol. 6 Issue 5 451 (2018)
  • Quantum Optics
    Chunxiao Cai, Long Ma, Juan Li, Hui Guo, Kui Liu, Hengxin Sun, Rongguo Yang, and Jiangrui Gao

    As a highly entangled quantum network, the cluster state has the potential for greater information capacity and use in measurement-based quantum computation. Here, we report generating a continuous-variable quadripartite “square” cluster state of multiplexing orthogonal spatial modes in a single optical parametric amplifier (OPA), and further improve the quality of entanglement by optimizing the pump profile. We produce multimode entanglement of two first-order Hermite–Gauss modes within one beam in a single multimode OPA and transform it into a cluster state by phase correction. Furthermore, the pump-profile dependence of the entanglement of this state is explored. Compared with fundamental mode pumping, an enhancement of approximately 33% is achieved using the suitable pump-profile mode. Our approach is potentially scalable to multimode entanglement in the spatial domain. Such spatial cluster states may contribute to future schemes in spatial quantum information processing.

    Apr. 26, 2018
  • Vol. 6 Issue 5 479 (2018)
  • Resonators
    Steven H. Huang, Xuefeng Jiang, Bo Peng, Corey Janisch, Alexander Cocking, Şahin Kaya Özdemir, Zhiwen Liu, and Lan Yang

    Conventionally, metallic nanostructures are used for surface-enhanced Raman spectroscopy (SERS), but recently there has been increasing interest in the enhancement of Raman scattering from dielectric substrates due to their improved stability and biocompatibility compared with metallic substrates. Here, we report the observation of enhanced Raman scattering from rhodamine 6G molecules coated on silica microspheres. We excite the whispering gallery modes (WGMs) supported in the microspheres with a tapered fiber coupler for efficient WGM excitation, and the Raman enhancement can be attributed to the WGM mechanism. Strong resonance enhancement in pump laser intensity and modified Raman emission from the Purcell effect in the microsphere resonator are observed from the experiment and compared with theoretical results. A total Raman enhancement factor of 1.4×104 is observed, with contribution mostly from the enhancement in pump laser intensity. Our results show that, with an efficient pumping scheme, dielectric microspheres are a viable alternative to metallic SERS substrates.

    Apr. 04, 2018
  • Vol. 6 Issue 5 346 (2018)
  • Eesa Rahimi, and Kürşat Şendur

    The chimera state is the concurrent combination of synchronous and incoherent oscillations in a set of identical oscillators. In this study, we demonstrate the states for optical nanoresonators where the oscillators are designed based on a plasmonic dimer cavity. This resonator interchanges radiative energy with an active medium located at its hotspot, and therefore forms an amplitude-mediated oscillating system. Finite-difference time-domain (FDTD)-based numerical analysis of a circular array of the coupled oscillators reveals that regardless of identical nature, oscillator phase is not concordant over time for all members. The effect of coupling strength on the phase escape/synchronization of the oscillators is investigated for the plasmonic nanoresonator system. It is shown that for identical oscillators, which are placed symmetrically over the perimeter of a disc, the array can be divided to several subgroups of concurrent coherent and incoherent members. While the oscillator of each subgroup seems to be locked together, one member can escape from synchronization for a while and return to coherency, or it can sync with the other groups. The effect of coupling strength and number of oscillators on the phase-escape pace is studied for this system, and strong coupling is shown to force the array members to fully synchronize while weaker coupling causes chimera states in the array.

    Apr. 23, 2018
  • Vol. 6 Issue 5 427 (2018)
  • Silicon Photonics
    Kapil Debnath, David J. Thomson, Weiwei Zhang, Ali Z. Khokhar, Callum Littlejohns, James Byers, Lorenzo Mastronardi, Muhammad K. Husain, Kouta Ibukuro, Frederic Y. Gardes, Graham T. Reed, and Shinichi Saito

    In silicon photonics, the carrier depletion scheme has been the most commonly used mechanism for demonstrating high-speed electro-optic modulation. However, in terms of phase modulation efficiency, carrier-accumulation-based devices potentially offer almost an order of magnitude improvement over those based on carrier depletion. Previously reported accumulation modulator designs only considered vertical metal-oxide-semiconductor (MOS) capacitors, which imposes serious restrictions on the design flexibility and integratability with other photonic components. In this work, for the first time to our knowledge, we report experimental demonstration of an all-silicon accumulation phase modulator based on a lateral MOS capacitor. Using a Mach–Zehnder interferometer modulator with a 500-μm-long phase shifter, we demonstrate high-speed modulation up to 25 Gbit/s with a modulation efficiency (VπLπ) of 1.53 V·cm.

    Apr. 18, 2018
  • Vol. 6 Issue 5 373 (2018)
  • Zepeng Pan, Songnian Fu, Luluzi Lu, Dongyu Li, Weijie Chang, Deming Liu, and Minming Zhang

    With the rapidly increasing bandwidth requirements of optical communication networks, compact and low-cost large-scale optical switches become necessary. Silicon photonics is a promising technology due to its small footprint, cost competitiveness, and high bandwidth density. In this paper, we demonstrate a 12×12 silicon wavelength routing switch employing cascaded arrayed waveguide gratings (AWGs) connected by a silicon waveguide interconnection network on a single chip. We optimize the connecting strategy of the crossing structure to reduce the switch’s footprint. We develop an algorithm based on minimum standard deviation to minimize the port-to-port insertion loss (IL) fluctuation of the switch globally. The simulated port-to-port IL fluctuation decreases by about 3 dB compared with that of the conventional one. The average measured port-to-port IL is 13.03 dB, with a standard deviation of 0.78 dB and a fluctuation of 2.39 dB. The device can be used for wide applications in core networks and data centers.

    Apr. 18, 2018
  • Vol. 6 Issue 5 380 (2018)
  • Ultrafast Optics
    Cheng Jin, and C. D. Lin

    We demonstrate the suppression of soft X-ray high harmonics generated by two-color laser pulses interacting with Ne gas in a gas cell. We show that harmonic suppression can occur at the proper combination of the propagation distance and gas pressure. The physical mechanism behind is the phase mismatch between “short”-trajectory harmonics generated at the early and later times through the interplay of geometric phase, dispersion, and plasma effects. In addition, we demonstrate that the position and depth of harmonic suppression can be tuned by increasing the gas pressure. Furthermore, the suppression can be extended to other laser focusing configurations by properly scaling macroscopic parameters. Our investigation reveals a simple and novel experimental scheme purely relying on the phase mismatch for selectively controlling soft X-ray tabletop light sources without adopting the filters for applications.

    Apr. 23, 2018
  • Vol. 6 Issue 5 434 (2018)
  • Fiber Optics and Optical Communications
    Liang-Yu Wei, Chin-Wei Hsu, Chi-Wai Chow, and Chien-Hung Yeh

    We propose and experimentally demonstrate a recorded 1-m bidirectional 20.231-Gbit/s tricolor R/G/B laser diode (LD) based visible-light communication (VLC) system supporting signal remodulation. In the signal remodulation system, an LD source is not needed at the client side. The client reuses the downstream signal sent from the central office (CO) and remodulates it to produce the upstream signal. As the LD sources are located at the CO, the laser wavelength and temperature managements at the cost-sensitive client side are not needed. This is the first demonstration, to our knowledge, of a >20 Gbit/s data rate tricolor R/G/B VLC signal transmission supporting upstream remodulation.

    Apr. 19, 2018
  • Vol. 6 Issue 5 422 (2018)
  • Optical Devices
    Ronghui Lin, Sergio Valdes Galan, Haiding Sun, Yangrui Hu, Mohd Sharizal Alias, Bilal Janjua, Tien Khee Ng, Boon S. Ooi, and Xiaohang Li

    A nanowire (NW) structure provides an alternative scheme for deep ultraviolet light emitting diodes (DUV-LEDs) that promises high material quality and better light extraction efficiency (LEE). In this report, we investigate the influence of the tapering angle of closely packed AlGaN NWs, which is found to exist naturally in molecular beam epitaxy (MBE) grown NW structures, on the LEE of NW DUV-LEDs. It is observed that, by having a small tapering angle, the vertical extraction is greatly enhanced for both transverse magnetic (TM) and transverse electric (TE) polarizations. Most notably, the vertical extraction of TM emission increased from 4.8% to 24.3%, which makes the LEE reasonably large to achieve high-performance DUV-LEDs. This is because the breaking of symmetry in the vertical direction changes the propagation of the light significantly to allow more coupling into radiation modes. Finally, we introduce errors to the NW positions to show the advantages of the tapered NW structures can be projected to random closely packed NW arrays. The results obtained in this paper can provide guidelines for designing efficient NW DUV-LEDs.

    Apr. 23, 2018
  • Vol. 6 Issue 5 457 (2018)
  • Please enter the answer below before you can view the full text.
    7+3=
    Submit