High Power Laser Science and Engineering
Co-Editors-in-Chief
Colin Danson, Jianqiang Zhu
High Energy Density Physics and High Power Lasers
M. Salvadori, G. Di Giorgio, M. Cipriani, M. Scisciò, C. Verona, P. L. Andreoli, G. Cristofari, R. De Angelis, M. Pillon, N. E. Andreev, P. Antici, N. G. Borisenko, D. Giulietti, M. Migliorati, O. Rosmej, S. Zähter, and F. Consoli

The time-of-flight technique coupled with semiconductor detectors is a powerful instrument to provide real-time characterization of ions accelerated because of laser–matter interactions. Nevertheless, the presence of strong electromagnetic pulses (EMPs) generated during the interactions can severely hinder its employment. For this reason, the diagnostic system must be designed to have high EMP shielding. Here we present a new advanced prototype of detector, developed at ENEA-Centro Ricerche Frascati (Italy), with a large-area (15 mm × 15 mm) polycrystalline diamond sensor having 150 μm thickness. The tailored detector design and testing ensure high sensitivity and, thanks to the fast temporal response, high-energy resolution of the reconstructed ion spectrum. The detector was offline calibrated and then successfully tested during an experimental campaign carried out at the PHELIX laser facility ( ${E}_L\sim$ 100 J, ${\tau}_L = 750$ fs, ${I}_L\sim \left(1{-}2.5\right)\times {10}^{19}$ W/cm2) at GSI (Germany). The high rejection to EMP fields was demonstrated and suitable calibrated spectra of the accelerated protons were obtained.

High Power Laser Science and Engineering
Jan. 01, 1900
  • Vol. 10 Issue 1 010000e6 (2022)
  • XFELS
    XFELs
    Tao Liu, Kaiqing Zhang, Zheng Qi, Si Chen, Chao Feng, Haixiao Deng, Bo Liu, and Dong Wang

    Laser–plasma accelerators (LPAs) have great potential to realize a compact X-ray free-electron laser (FEL), which is limited by the beam properties currently. Two-color high-intensity X-ray FEL provides a powerful tool for probing ultrafast dynamic systems. In this paper, we present a simple and feasible method to generate a two-color X-ray FEL pulse based on an LPA beam. In this scheme, time-dependent mismatch along the bunch is generated and manipulated by the designed lattice system, enabling FEL lasing at different wavelength within two undulator sections. The time separation between the two pulses can be precisely adjusted by varying the time-delay chicane. Numerical simulations show that two-color soft X-ray FELs with gigawatt-level peak power and femtosecond duration can be generated, which confirm the validity and feasibility of the scheme.

    High Power Laser Science and Engineering
    Jan. 01, 1900
  • Vol. 10 Issue 1 010000e1 (2022)
  • XFELs
    Sheng Zhao, Weilun Qin, and Senlin Huang

    High-gain harmonic generation (HGHG) is effective to produce fully coherent free-electron laser (FEL) pulses for various scientific applications. Due to the limitation of seed lasers, HGHG typically operates at a low repetition rate. In this paper, a harmonic-enhanced HGHG scheme is proposed to relax the peak power requirement for the seed laser, which can therefore operate at megahertz and a higher repetition rate. Moreover, the setup of the scheme is compact and can be adopted in an existing single-stage HGHG facility to extend the shortest achievable wavelength. Simulations show that FEL emission at 13.5 nm (20th harmonic) can be obtained with a 270 nm, 1 MW (peak power) seed laser.

    High Power Laser Science and Engineering
    Jan. 01, 1900
  • Vol. 10 Issue 1 010000e4 (2022)
  • Research Articles
    C. Y. Qin, H. Zhang, S. Li, S. H. Zhai, A. X. Li, J. Y. Qian, J. Y. Gui, F. X. Wu, Z. X. Zhang, Y. Xu, X. Y. Liang, Y. X. Leng, B. F. Shen, L. L. Ji, and R. X. Li

    We report on experimental observation of non-laminar proton acceleration modulated by a strong magnetic field in laser irradiating micrometer aluminum targets. The results illustrate the coexistence of ring-like and filamentation structures. We implement the knife edge method into the radiochromic film detector to map the accelerated beams, measuring a source size of 30–110 μm for protons of more than 5 MeV. The diagnosis reveals that the ring-like profile originates from low-energy protons far off the axis whereas the filamentation is from the near-axis high-energy protons, exhibiting non-laminar features. Particle-in-cell simulations reproduced the experimental results, showing that the short-term magnetic turbulence via Weibel instability and the long-term quasi-static annular magnetic field by the streaming electric current account for the measured beam profile. Our work provides direct mapping of laser-driven proton sources in the space-energy domain and reveals the non-laminar beam evolution at featured time scales.

    Jan. 01, 1900
  • Vol. 10 Issue 1 010000e2 (2022)
  • C. C. Gheorghiu, M. Cerchez, E. Aktan, R. Prasad, F. Yilmaz, N. Yilmaz, D. Popa, O. Willi, and V. Leca

    Engineered targets are expected to play a key role in future high-power laser experiments calling for joined, extensive knowledge in materials properties, engineering techniques and plasma physics. In this work, we propose a novel patterning procedure of self-supported 10 μm thick Au and Cu foils for obtaining micrometre-sized periodic gratings as targets for high-power laser applications. Accessible techniques were considered, by using cold rolling, electron-beam lithography and the Ar-ion milling process. The developed patterning procedure allows efficient control of the grating and foil surface on large area. Targets consisting of patterned regions of 450 μm × 450 μm, with 2 μm periodic gratings, were prepared on 25 mm × 25 mm Au and Cu free-standing foils, and preliminary investigations of the micro-targets interacting with an ultrashort, relativistic laser pulse were performed. These test experiments demonstrated that, in certain conditions, the micro-gratings show enhanced laser energy absorption and higher efficiency in accelerating charge particle beams compared with planar thin foils of similar thickness.

    Jan. 01, 1900
  • Vol. 10 Issue 1 010000e3 (2022)
  • Ji Ping Zou, Hervé Coïc, and Dimitris Papadopoulos

    Emerging multi-PW-class lasers and their envisioned laser–plasma interaction applications in unprecedented intensity regimes set a very demanding frame for the precise understanding of the finest properties of these systems. In this work we present a synthesis of simulation studies on a series of less known or even completely disregarded spatiotemporal effects that could potentially impact greatly the performances of high-intensity lasers.

    Jan. 01, 1900
  • Vol. 10 Issue 1 010000e5 (2022)
  • Tongyao Du, Dajie Huang, He Cheng, Wei Fan, Zhibo Xing, Xuechun Li, and Jianqiang Zhu

    In this paper, we propose an effective method to compensate for the performance degradation of optically addressed spatial light modulators (OASLMs). The thermal deposition problem usually leads to the on-off ratio reduction of amplitude OASLM, so it is difficult to achieve better results in high-power laser systems. Through the analysis of the laser-induced temperature rise model and the liquid crystal layer voltage model, it is found that reducing the driving voltage of the liquid crystal light valve and increasing the driving current of the optical writing module can compensate for the decrease of on–off ratio caused by temperature rise. This is the result of effectively utilizing the photoconductive effect of Bi12SiO20 (BSO) crystal. The experimental results verify the feasibility of the proposed method and increase the laser withstand power of amplitude-only OASLM by about a factor of 2.5.

    Jan. 01, 1900
  • Vol. 10 Issue 1 010000e7 (2022)
  • Please enter the answer below before you can view the full text.
    6-4=
    Submit