Chinese Optics Letters
Co-Editors-in-Chief
Zhizhan Xu
Atmospheric, Oceanic, Space, and Environmental Optics
Yanjun Liang, Hongxi Yin, An Huang, Xiuyang Ji, and Jianying Wang

This paper has proposed an experimental system for non-orthogonal multiple access (NOMA) wireless optical communication in challenging underwater turbulent environments, employing the gallium nitride (GaN)-based micro-LED array. This design of the GaN-based micro-LED array enables the independent transmission of signals from distinct data streams within the NOMA framework, facilitating direct optical power-domain superposition of NOMA signals. The experimental setup involves emulating oceanic turbulence channels, characterized by varying the level of scintillation intensity, to thoroughly investigate the bit error rate (BER) performance. The outcomes unequivocally demonstrate the superiority of our proposed NOMA scheme, as compared to conventional circuit-driven optical NOMA systems utilizing fixed LED array grouping, particularly in the presence of turbulent underwater channels. The proposed NOMA scheme exhibits consistently superior BER performance and maintains excellent linearity at the lower frequencies while effectively mitigating signal distortion at the higher frequencies.

Mar. 15, 2024
  • Vol. 22 Issue 3 030101 (2024)
  • Biophotonics
    Lei Wang, Meiting Wang, Luwei Wang, Xiaomin Zheng, Jiajie Chen, Wenshuai Wu, Wei Yan, Bin Yu, Junle Qu, Bruce Zhi Gao, and Yonghong Shao

    Wide-field linear structured illumination microscopy (LSIM) extends resolution beyond the diffraction limit by moving unresolvable high-frequency information into the passband of the microscopy in the form of moiré fringes. However, due to the diffraction limit, the spatial frequency of the structured illumination pattern cannot be larger than the microscopy cutoff frequency, which results in a twofold resolution improvement over wide-field microscopes. This Letter presents a novel approach in point-scanning LSIM, aimed at achieving higher-resolution improvement by combining stimulated emission depletion (STED) with point-scanning structured illumination microscopy (psSIM) (STED-psSIM). The according structured illumination pattern whose frequency exceeds the microscopy cutoff frequency is produced by scanning the focus of the sinusoidally modulated excitation beam of STED microscopy. The experimental results showed a 1.58-fold resolution improvement over conventional STED microscopy with the same depletion laser power.

    Mar. 13, 2024
  • Vol. 22 Issue 3 031701 (2024)
  • Xing Long, Yicheng Hu, Yibing Wang, and Changhui Li

    We present a novel noncontact ultrasound (US) and photoacoustic imaging (PAI) system, overcoming the limitations of traditional coupling media. Using a long coherent length laser, we employ a homodyne free-space Mach–Zehnder setup with zero-crossing triggering, achieving a noise equivalent pressure of 703 Pa at 5 MHz and a -6 dB bandwidth of 1 to 8.54 MHz. We address the phase uncertainty inherent in the homodyne method. Scanning the noncontact US probe enables photoacoustic computed tomography (PACT). Phantom studies demonstrate imaging performance and system stability, underscoring the potential of our system for noncontact US sensing and PAI.

    Mar. 28, 2024
  • Vol. 22 Issue 3 031702 (2024)
  • Fiber Optics and Optical Communications
    Yuanzhe Qu, Qianwu Zhang, Yanyi Wang, Yanhao Chen, Lewei Gong, Ziyue Liu, Junjie Zhang, Yingchun Li, Jian Chen, and Yingxiong Song

    In this paper, we demonstrate a high-sensitivity and real-time heterodyne coherent optical transceiver for intraplane satellite communication, without digital-to-analog converter (DAC) devices and an optical phase lock loop (OPLL). Based on the scheme, a real-time sensitivity of -49 dBm is achieved at 5 Gbps QPSK. Because DAC is not needed at the transmitter, as well as OPLL at the receiver, this reduces the system cost. Furthermore, the least required Rx ADC bit-width is also discussed. Through theoretical analysis and experimental results, our cost-effective transceiver satisfies the scenario and could be a promising component for future application.

    Mar. 21, 2024
  • Vol. 22 Issue 3 030601 (2024)
  • Yanan Zhong, Chuxuan Lin, Juncheng Fang, Ting Lei, and Xiaocong Yuan

    Data exchange between different mode channels is essential in the optical communication network with mode-division multiplexing (MDM). However, there are challenges in realizing mode exchange with low insert loss, low mode crosstalk, and high integration. Here, we designed and fabricated a mode exchange device based on multiplane light conversion (MPLC), which supports the transmission of LP01, LP11a, LP11b, and LP21 modes in the C-band and L-band. The simulated exchanged mode purities are greater than 85%. The phase masks were fabricated on a silicon substrate to facilitate the integration with optical systems, with an insert loss of less than 2.2 dB and mode crosstalk below -21 dB due primarily to machining inaccuracies and alignment errors. We carried out an optical communication experiment with 10 Gbit/s OOK and QPSK data transmission at the wavelength of 1550 nm and obtained excellent performance with the device. It paves the way for flexible data exchange as a building block in MDM optical communication networks.

    Mar. 22, 2024
  • Vol. 22 Issue 3 030602 (2024)
  • Imaging Systems and Image Processing
    Junjie Cai, and Wenlin Gong

    The source’s energy fluctuation has a great effect on the quality of single-pixel imaging (SPI). When the method of complementary detection is introduced into an SPI camera system and the echo signal is corrected with the summation of the light intensities recorded by two complementary detectors, we demonstrate, by both experiments and simulations, that complementary single-pixel imaging (CSPI) is robust to the source’s energy fluctuation. The superiority of the CSPI structure is also discussed in comparison with previous SPI via signal monitoring.

    Mar. 22, 2024
  • Vol. 22 Issue 3 031101 (2024)
  • Yongzhuang Zhou, Hongshuo Zhang, Yong Shen, Andrew R. Harvey, and Hongxin Zou

    The 3D location and dipole orientation of light emitters provide essential information in many biological, chemical, and physical systems. Simultaneous acquisition of both information types typically requires pupil engineering for 3D localization and dual-channel polarization splitting for orientation deduction. Here we report a geometric phase helical point spread function for simultaneously estimating the 3D position and dipole orientation of point emitters. It has a compact and simpler optical configuration compared to polarization-splitting techniques and yields achromatic phase modulation in contrast to pupil engineering based on dynamic phase, showing great potential for single-molecule orientation and localization microscopy.

    Mar. 25, 2024
  • Vol. 22 Issue 3 031103 (2024)
  • Liyu Zhou, Yanfeng Bai, Qin Fu, Xiaohui Zhu, Xianwei Huang, Xuanpengfan Zou, and Xiquan Fu

    The array spatial light field is an effective means for improving imaging speed in single-pixel imaging. However, distinguishing the intensity values of each sub-light field in the array spatial light field requires the help of the array detector or the time-consuming deep-learning algorithm. Aiming at this problem, we propose measurable speckle gradation Hadamard single-pixel imaging (MSG-HSI), which makes most of the refresh mechanism of the device generate the Hadamard speckle patterns and the high sampling rate of the bucket detector and is capable of measuring the light intensity fluctuation of the array spatial light field only by a simple bucket detector. The numerical and experimental results indicate that data acquisition in MSG-HSI is 4 times faster than in traditional Hadamard single-pixel imaging. Moreover, imaging quality in MSG-HSI can be further improved by image stitching technology. Our approach may open a new perspective for single-pixel imaging to improve imaging speed.

    Mar. 25, 2024
  • Vol. 22 Issue 3 031104 (2024)
  • Integrated Optics
    Haoqi Chen, Runkui Yao, Pengjun Wang, Qiang Fu, Weiwei Chen, Shixun Dai, Dejun Kong, Jian Lin, Tao Jin, Jun Li, Tingge Dai, and Jianyi Yang

    A polarization-insensitive mode-order converting power splitter using a pixelated region is presented and investigated in this paper. As TE0 and TM0 modes are injected into the input port, they are converted into TE1 and TM1 modes, which evenly come out from the two output ports. The finite-difference time-domain method and direct-binary-search optimization algorithm are utilized to optimize structural parameters of the pixelated region to attain small insertion loss, low crosstalk, wide bandwidth, excellent power uniformity, polarization-insensitive property, and compact size. Experimental results reveal that the insertion loss, crosstalk, and power uniformity of the fabricated device at 1550 nm are 0.57, -19.67, and 0.094 dB in the case of TE polarization, while in the TM polarization, the relevant insertion loss, crosstalk, and power uniformity are 0.57, -19.40, and 0.11 dB. Within a wavelength range from 1520 to 1600 nm, for the fabricated device working at TE polarization, the insertion loss, crosstalk, and power uniformity are lower than 1.39, -17.64, and 0.14 dB. In the case of TM polarization, we achieved an insertion loss, crosstalk, and power uniformity less than 1.23, -17.62, and 0.14 dB.

    Mar. 19, 2024
  • Vol. 22 Issue 3 031301 (2024)
  • Heming Hu, Shiping Liu, Tianwen Li, Yongjie Fan, Hua Chen, and Qing Fang

    The silicon-based arrayed waveguide grating (AWG) is widely used due to its compact footprint and its compatibility with the mature CMOS process. However, except for AWGs with ridged waveguides of a few micrometers of cross section, any small process error will cause a large phase deviation in other AWGs, resulting in an increasing cross talk. In this paper, an ultralow cross talk AWG via a tunable microring resonator (MRR) filter is demonstrated on the SOI platform. The measured insertion loss and minimum adjacent cross talk of the designed AWG are approximately 3.2 and -45.1 dB, respectively. Compared with conventional AWG, its cross talk is greatly reduced.

    Mar. 07, 2024
  • Vol. 22 Issue 3 031303 (2024)
  • Yuedi Ding, Chenglin Shang, Wenqi Yu, Xiang Ma, Shaobo Li, Cheng Zeng, and Jinsong Xia

    We propose and demonstrate an integrated microwave photonic sideband selector based on the thin-film lithium niobate (TFLN) platform by integrating an electro-optic Mach–Zehnder modulator (MZM) and a thermo-optic tunable flat-top microring filter. The sideband selector has two functions: electro-optic modulation of wideband RF signal and sideband selection. The microwave photonic sideband selector supports processing RF signals up to 40 GHz, with undesired sidebands effectively suppressed by more than 25 dB. The demonstrated device shows great potential for TFLN integrated technology in microwave photonic applications, such as mixing and frequency measurement.

    Mar. 25, 2024
  • Vol. 22 Issue 3 031304 (2024)
  • Lasers, Optical Amplifiers, and Laser Optics
    Ziyun Wang, Zaibin Xu, Jiwen Cui, and Jiubin Tan

    A whispering gallery mode resonator (WGMR) filter can narrow laser linewidth while significantly changing the output power characteristics of fiber laser system. It is found that traditional laser output power model is invalid. We report a correction model of a narrow linewidth fiber laser filtered with a WGMR to analyze its power. We believe that the loss of the laser system and the threshold gain increase caused by the WGMR filter lead to the predominate amplified spontaneous emission during the original laser period. According to that, we assume the correction coefficient is an exponential decay related to the Er-doped fiber length in the large loss situation, and we verify it experimentally. As a result, the correction model is valid for WGMR-filtered fiber laser.

    Mar. 19, 2024
  • Vol. 22 Issue 3 031401 (2024)
  • Dan Wang, Ping He, Tangjian Zhou, Mi Li, Yingchen Wu, Yanan Wang, Jianli Shang, Qingsong Gao, Kai Zhang, Chun Tang, and Rihong Zhu

    A high-power CW Yb:YAG slab laser amplifier with no adaptive optics correction has been experimentally established. At room temperature, the amplifier emits a power of 22 kW with an average beam quality (β) of less than 3 in 0.5 min. To our knowledge, this is the brightest slab laser without closed-loop adaptive optics demonstrated to date. In addition, an extracted power of 17 kW with an optical extraction efficiency of 33%, corresponding to a residual optical path difference of less than 0.5 µm, is achieved with the single Yb:YAG slab gain module. The slab gain module has the potential to be scalable to higher powers while maintaining good beam quality. This makes a high-power solid-state laser system simpler and more robust.

    Mar. 21, 2024
  • Vol. 22 Issue 3 031402 (2024)
  • Wenyan Zhang, Huijie Jiang, Kun Yang, Nannan Liu, Lijie Geng, Yunqi Hao, Tianhao Xian, and Li Zhan

    A passively switchable erbium-doped fiber laser based on alcohol as the saturable absorber (SA) has been demonstrated. The SA is prepared by filling the gap between two optical patch cords with alcohol to form a sandwich structure. The modulation depth of the alcohol–SA is measured to be 6.4%. By appropriately adjusting the pump power and the polarization state in the cavity, three kinds of mode-locked pulse patterns can be achieved and switched, including bright pulse, bright/dark soliton pair, and dark pulse. These different soliton emissions all operate at the fundamental frequency state, with a repetition rate of 20.05 MHz and a central wavelength of ∼1563 nm. To the best of our knowledge, this is the first demonstration of a switchable soliton fiber laser using alcohol as the SA. The experimental results further indicate that organic liquid-like alcohol has great potential for constructing ultrafast lasers.

    Mar. 07, 2024
  • Vol. 22 Issue 3 031403 (2024)
  • Hao Tian, Zhe Zhu, Wei Lin, Zihao Li, Junpeng Wen, Hao Xiu, Yiheng Fan, Chiyi Wei, Xiaoming Wei, and Zhongmin Yang

    We report a high-stability ultrafast ultraviolet (UV) laser source at 352 nm by exploring an all-fiber, all-polarization-maintaining (all-PM), Yb-doped femtosecond fiber laser at 1060 nm. The output power, pulse width, and optical spectrum width of the fiber laser are 6 W, 244 fs, and 17.5 nm, respectively. The UV ultrashort pulses at a repetition rate of 28.9 MHz are generated by leveraging single-pass second-harmonic generation in a 1.3-mm-long BiB3O6 (BIBO) and sum frequency generation in a 5.1-mm-long BIBO. The maximum UV output power is 596 mW. The root mean square error of the output power of UV pulses is 0.54%. This laser, with promising stability, is expected to be a nice source for frontier applications in the UV wavelength window.

    Mar. 22, 2024
  • Vol. 22 Issue 3 031404 (2024)
  • Mengyuan Li, Yufeng Song, Chunxiang Zhang, Zhenhong Wang, and Jun Liu

    We demonstrate the generation of a unique regime of multiple solitons in a Tm-doped ultrafast fiber laser at ∼1938.72 nm. The temporal pulse-to-pulse separation among the multiple solitons, 10 in a single-pulse bunch, increases from 0.89 ns to 1.85 ns per round trip. In addition, with the increasing pump power, the number of bunched solitons increases from 3 up to 24 linearly, while the average time separation in the soliton bunch varies irregularly between ∼0.80 and ∼1.52 ns. These results contribute to a more profound comprehension of nonlinear pulse dynamics in ultrafast fiber lasers.

    Mar. 04, 2024
  • Vol. 22 Issue 3 031405 (2024)
  • Light-matter Interaction
    Xia Meng, Ping Jin, Shijun Ge, Jiao Liu, Bingxiang Li, Lei Wang, and Yanqing Lu

    This study investigated direct fluorescence generation from a nematic liquid crystal (NLC) NJU-LDn-4 under femtosecond laser excitation. The absorption, transmittance, excitation, and emission spectra of the NLC were assessed. The relationship between the femtosecond pump power and fluorescence intensity was analyzed, revealing a quadratic increase and indicating that two-photon absorption (2PA) is the primary fluorescence mechanism. The LC microstructure was designed using photoalignment technology, allowing the generated fluorescence to reflect the corresponding structure. This research can establish a foundation for tunable LC microstructured fluorescence, with potential applications in fluorescence microscopy and optoelectronics.

    Mar. 21, 2024
  • Vol. 22 Issue 3 033801 (2024)
  • Nanophotonics, Metamaterials, and Plasmonics
    Zhanlei Hao, Shan Zhu, Cheng-Wei Qiu, Yadong Xu, and Huanyang Chen

    Vortex waves with orbital angular momentum (OAM) are a highly active research topic in various fields. In this paper, we design and investigate cylindrical metagratings (CMs) with an even number of unit cells that can efficiently achieve vortex localization and specific OAM selective conversion. The multifunctional manipulation of vortex waves and the new OAM conservation law have further been confirmed through analytical calculations and numerical simulations. In addition, we qualitatively and quantitatively determine the OAM range for vortex localization and the OAM value of vortex selective conversion and also explore the stability for performance and potential applications of the designed structure. This work holds potential applications in particle manipulation and optical communication.

    Mar. 04, 2024
  • Vol. 22 Issue 3 033601 (2024)
  • Rui Ge, Jiangwei Wu, Xiangmin Liu, Yuping Chen, and Xianfeng Chen

    Lithium niobate is a material that exhibits outstanding electro-optic, nonlinear optical, acousto-optic, piezoelectric, photorefractive, and pyroelectric properties. A thin-film lithium niobate photonic crystal can confine light in the sub-wavelength scale, which is beneficial to the integration of the lithium niobate on-chip device. The commercialization of the lithium niobate on insulator gives birth to the emergence of high-quality lithium niobate photonic crystals. In order to provide guidance to the research of lithium niobate photonic crystal devices, recent progress about fabrication, characterization, and applications of the thin-film lithium niobate photonic crystal is reviewed. The performance parameters of the different devices are compared.

    Feb. 20, 2024
  • Vol. 22 Issue 3 033602 (2024)
  • Nonlinear Optics
    Zhaofeng Liu, Siwei Tang, Zengrun Wen, Yuanmei Gao, Yangjian Cai, and Liren Zheng

    We investigated the Talbot effect in an anti-parity-time (PT) symmetric synthetic photonic lattice composed of two coupled fiber loops. We calculated the band structures and found that with an increase in the gain-loss parameter, the band transitions from a real spectrum to a complex spectrum. We study the influence of phase in the Hermitian operator on the Talbot effect, and the Talbot effect disappears when the period of the input field is N > 8. Further study shows that the variation of Talbot distance can also be modulated by non-Hermitian coefficients of gain and loss. This work may find significant applications in pulse repetition-rate multiplication, temporal invisibility, and tunable intensity amplifiers.

    Mar. 21, 2024
  • Vol. 22 Issue 3 031901 (2024)
  • Jing Zeng, Sen Wang, Ruwei Zhao, Yongxing Liu, Tiefeng Xu, Yan Sheng, and Tianxiang Xu

    The design of nonlinear photonic Vogel’s spiral based on quasi-crystal theory was demonstrated. Two main parameters of Vogel’s spiral were arranged to obtain multi-reciprocal circles. Typical structure was fabricated by the near-infrared femtosecond laser poling technique, forming a nonlinear photonic structure, and multiple ring-like nonlinear Raman–Nath second-harmonic generation processes were realized and analyzed in detail. The structure for the cascaded third-harmonic generation process was predicted. The results could help deepen the understanding of Vogel’s spiral and quasi-crystal and pave the way for the combination of quasi-crystal theory with more aperiodic structures.

    Mar. 21, 2024
  • Vol. 22 Issue 3 031902 (2024)
  • Jiefu Zhu, Tingting Ding, Xuerui Sun, Fengchao Ni, Hao Li, Shijie Liu, Yuanlin Zheng, and Xianfeng Chen

    Whispering-gallery-mode (WGM) microresonators can greatly enhance light–matter interaction, making them indispensable units for frequency conversion in nonlinear optics. Efficient nonlinear wave mixing in microresonators requires stringent simultaneous optical resonance and phase-matching conditions. Thus, it is challenging to achieve efficient frequency conversion over a broad bandwidth. Here, we demonstrate broadband second-harmonic generation (SHG) in the x-cut thin-film lithium niobate (TFLN) microdisk with a quality factor above 107 by applying the cyclic quasi-phase-matching (CQPM) mechanism, which is intrinsically applicable for broadband operation. Broadband SHG of continuous-wave laser with a maximum normalized conversion efficiency of ∼15%/mW is achieved with a bandwidth spanning over 100 nm in the telecommunication band. Furthermore, broadband SHG of femtosecond lasers, supercontinuum lasers, and amplified spontaneous emission in the telecommunication band is also experimentally observed. The work is beneficial for integrated nonlinear photonics devices like frequency converters and optical frequency comb generator based on second-order nonlinearity on the TFLN platform.

    Mar. 22, 2024
  • Vol. 22 Issue 3 031903 (2024)
  • Optical Materials
    Qiming Zhao, Shouyan Zhang, Shuxian Wang, Gang Wang, Haohai Yu, and Huaijin Zhang

    Topological nodal-line semimetals attract growing research attention in the photonic and optoelectronic fields due to their unique topological energy-level bands and fascinating nonlinear optical responses. Here, to the best of our knowledge, we first report the saturable absorption property of topological nodal-line semimetal HfGeTe and the related pulse modulation in passively Q-switched visible lasers. Few-layer HfGeTe demonstrates outstanding saturable absorption properties in the visible-light band, yielding the saturation intensities of 7.88, 12.66, and 6.64 µJ/cm2 at 515, 640, and 720 nm, respectively. Based on an as-prepared few-layer HfGeTe optical switch and a Pr:LiYF4 gain medium, Q-switched visible lasers are also successfully achieved at 522, 640, and 720 nm. The minimum pulse widths of the green, red, and deep-red pulsed lasers are 150, 125.5, and 420 ns, respectively. Especially for the green and red pulsed laser, the obtained pulse width is smaller than those of the low-dimensional layered materials. Our work sheds light on the application potential of topological nodal-line semimetals in the generation of visible pulsed lasers.

    Mar. 25, 2024
  • Vol. 22 Issue 3 031601 (2024)
  • Integrated Optics
    Hongjie Guo, Haifeng Liu, Ming Lei, Manqing Tan, and Zhigang Song

    Integrated optical gyroscopes (IOGs) have been an efficient tool for numerous applications in various fields, including inertial navigation, flight control, and earthquake monitoring. Here, we review the progress of integrated optical gyroscopes based on two categories of integrated interferometric optical gyroscopes (IIOGs) and integrated resonant optical gyroscopes (IROGs).

    Mar. 15, 2024
  • Vol. 22 Issue 3 031302 (2024)
  • Optoelectronics
    James Garofolo, and Ben Wu

    In this review paper, we discuss the properties and applications of photonic computing and analog signal processing. Photonic computational circuits have large operation bandwidth, low power consumption, and fine frequency control, enabling a wide range of application-specific computational techniques that are impossible to implement using traditional electrical and digital hardware alone. These advantages are illustrated in the elegant implementation of optical steganography, the real-time blind separation of signals in the same bandwidth, and the efficient acceleration of artificial neural network inference. The working principles and use of photonic circuits for analog signal processing and neuromorphic computing are reviewed and notable demonstrated applications are highlighted.

    Mar. 21, 2024
  • Vol. 22 Issue 3 032501 (2024)
  • Please enter the answer below before you can view the full text.
    8-3=
    Submit