Infrared and Laser Engineering, Volume. 53, Issue 8, 20240210(2024)

Simulation study on fluctuation characteristics of channel transmittance for free-space continuous-variable quantum key distribution quantum

Zhigeng WU1,2, Ming LI1,2, Zhenghao YAO1,2, and Tianyi WANG3
Author Affiliations
  • 1College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China
  • 2Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, Tianjin Normal University, Tianjin 300387, China
  • 3College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
  • show less

    ObjectiveThe transmittance of free-space quantum channels plays an important role in the security analysis of continuous-variable quantum key distribution (CV-QKD). The atmospheric turbulence in free space leads to random fluctuations in transmittance, thereby degrading the CV-QKD. The existing analytical models fail to accurately characterize the transmittance of free-space quantum channel, since the models lack of comprehensive considerations based on the physical mechanism of atmospheric turbulence effects. Therefore, the accurate fluctuation characteristics of channel transmittance are studied in this paper by dint of numerical simulations concerning various turbulence impacts from the view of the basic concept of atmospheric turbulence.MethodsIn this paper, the method of split-step transmission combined with phase screen flat panel is employed to numerically simulate the free space quantum channel according to the basic concept of atmospheric turbulence (Fig.2-3). The simulation results are comprehensively compared and analyzed with those existing analytical models. Concretely, numerical simulations of 105 were performed on the free space quantum channel to calculate the transmission rate, and the mathematical statistics has been made. The probability density of the free space quantum channel transmission has been obtained (Fig.4-5).Results and DiscussionsThe results showed that the modified Von Karman atmospheric turbulence spectrum model could accurately achieve the realistic free space quantum channel, while the transmission of the free space quantum channel calculated using the Kolmogorov atmospheric turbulence spectrum model would be overestimated, with a maximum error of 5.28%. By comparing the probability density of transmission accurately achieved by numerical simulation with the existing elliptical beam approximation model and beam wandering model, it is concluded that those existed models would underestimate the transmission, thus deviating from the realistic free space quantum channels.ConclusionsThe statistical characteristics of transmittance fluctuation with respect to the horizontal free space quantum channels under weak and moderate turbulence have been numerically studied in this paper by using the method of split-step transmission combined with the field amplitude sampling based on sparse spectrum. To begin with, the differences between the two widely known atmospheric turbulence spectrum models in simulating transmittance fluctuation have been analyzed. Compared to the modified spectrum model, the transmittances calculated by the Kolmogorov spectrum model are relatively higher. Consequently, the Kolmogorov spectrum model would overestimate the free space quantum channel transmittance, while the modified Von Karman spectrum model enables statistical laws of transmittance which highly match the realistic free space quantum channels. Subsequently, a comprehensive comparison has been performed between the statistical results associated with the numerical simulations and those known analytical models including the beam wandering model and the elliptical beam approximation model. It could be concluded that the probability density curves of transmittance presented by the existing analytical models deviate from the numerical simulation results. The transmittance would be underestimated by the use of existing models due to the fact that those models merely concern single turbulence effect. In contrast, the numerical simulations performed in the paper naturally take various turbulence impacts into account according to the basic concept of atmospheric turbulence. In the sense, the achievement is able to accurately represent the random fluctuation characteristics of free space quantum channel transmittance, which can be employed to precisely evaluate the security of free-space CV-QKD.

    Keywords
    Tools

    Get Citation

    Copy Citation Text

    Zhigeng WU, Ming LI, Zhenghao YAO, Tianyi WANG. Simulation study on fluctuation characteristics of channel transmittance for free-space continuous-variable quantum key distribution quantum[J]. Infrared and Laser Engineering, 2024, 53(8): 20240210

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum optics

    Received: May. 16, 2024

    Accepted: --

    Published Online: Oct. 29, 2024

    The Author Email:

    DOI:10.3788/IRLA20240210

    Topics