Infrared and Laser Engineering, Volume. 50, Issue 8, 20210396(2021)

Development and application of mid-infrared high-energy, high-power, few-cycle optical parametric chirped pulse amplifier (Invited)

Linzhen He, Kan Tian, Xuemei Yang, and Houkun Liang*
Author Affiliations
  • Institute of Electronic Information, Sichuan University, Chengdu 610065, China
  • show less

    In recent decades, ultra-intense ultrashort pulse is an important trend in the development of laser optics. Especially in the mid-infrared (MIR) band, because the mid-infrared wavelength has greater ponderomotive force and its spectral range contains almost all the molecular "fingerprint" resonance peaks, the research of mid-infrared laser is very important in the fields of strong-field physics, mid-infrared spectroscopy, material processing and biomedical research. At present, there are many mature techniques for pulse shaping and amplification, such as different frequency generation (DFG), chirped pulse amplification (CPA), optical parametric amplification (OPA) and optical parametric chirped pulse amplification (OPCPA). Using optical parametric chirped pulse amplification technology with its advantages of high amplification gain, high signal-to-noise ratio and wide gain bandwidth to amplify the pulse in nonlinear crystals with high nonlinear coefficient has become one of the main means to obtain ultra-short and ultra-intense mid-infrared pulse.This paper summarizes the research progress of generating and amplifying MIR few-cycle pulse in 2-20 μm based on OPCPA , and its applications in strong-field physics, molecular spectrum detection and biomedicine are briefly described.

    Tools

    Get Citation

    Copy Citation Text

    Linzhen He, Kan Tian, Xuemei Yang, Houkun Liang. Development and application of mid-infrared high-energy, high-power, few-cycle optical parametric chirped pulse amplifier (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210396

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue—ultrafast and ultraintense mid-infrared laser technology

    Received: Jun. 11, 2021

    Accepted: --

    Published Online: Nov. 2, 2021

    The Author Email: Liang Houkun (hkliang@scu.edu.cn)

    DOI:10.3788/IRLA20210396

    Topics