Infrared and Laser Engineering, Volume. 50, Issue 10, 20210185(2021)

An improved machine learning algorithm for optical fiber network path optimization

Wenjun Wang1 and Na Xu2
Author Affiliations
  • 1School of Engineering Management, Shanxi Vocational University of Engineering and Scientific, Jinzhong 030619, China
  • 2School of Art, Yanching Institute of Technology, Langfang 065201, China
  • show less

    Aiming at the problem that the quality of the data stream transmission path in optical fiber network communication affected the utilization of network resources, an improved data transmission path optimization machine learning algorithm was proposed. Firstly, the machine learning was used to complete the preprocessing of the initial data, the data feature information was obtained, and the data stream classification was completed. Based on the analysis of the data flow within the optical fiber span, a cluster group was constructed to complete the adjustment of the data path and realize the full use of network resources. Secondly, the optimization of the cluster analysis was completed by taking the similarity matrix containing the characteristic parameters as the constraint condition. The similarity matrix was ​​established according to the data characteristic parameters, and the function mapping relationship was established between the characteristic parameters and the data flow type of the communication path. Finally, the kernel function was used to optimize the transmission path to realize the optimization of the network transmission path. The experiment optimized the path for a network containing multiple fiber spans, and compared it with the traditional K-means clustering algorithm. The ratio of the 6 different data streams in the test can fully reflect the data communication status under different conditions. The experimental results show that the classification accuracy of the algorithm is 94.6%, the average execution time is 12.8 s, and the average cluster change degree is 31.3%. The classification accuracy of the traditional K-means clustering algorithm is 84.6%, the average execution time is 20.8 s, and the average clustering change is 46.2%. The convergence time of this algorithm is also better than that of traditional algorithms, and it has higher accuracy and real-time performance in network data transmission.

    Tools

    Get Citation

    Copy Citation Text

    Wenjun Wang, Na Xu. An improved machine learning algorithm for optical fiber network path optimization[J]. Infrared and Laser Engineering, 2021, 50(10): 20210185

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical communication and sensing

    Received: Mar. 18, 2021

    Accepted: --

    Published Online: Dec. 7, 2021

    The Author Email:

    DOI:10.3788/IRLA20210185

    Topics