[1] R.Academy, R.Boehler, D. A.Dzivenko, M. I.Eremets, A. G.Gavriliuk, I. A.Trojan. Single-bonded cubic form of nitrogen. Nat. Mater., 3, 558-563(2004).
[2] M.Kim, J.Smith, D.Tomasino, C. S.Yoo. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity. Phys. Rev. Lett., 113, 205502(2014).
[3] G.Geneste, D.Laniel, P.Loubeyre, M.Mezouar, G.Weck. Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa. Phys. Rev. Lett., 122, 066001(2019).
[4] A. A.Adeleke, H.Gou, C.Ji, B.Li, W.Liu, H. K.Mao, W. L.Mao, Y.Meng, V. B.Prakapenka, G.Shen, J. S.Smith, B.Wan, L.Yang, Y.Yao. Nitrogen in black phosphorus structure. Sci. Adv., 6, eaba9206(2020).
[5] X.Peng, B.Wei, Q.Wei, H.Yan, M.Zhang, C.Zhao. New stable structures of HeN3 predicted using first-principles calculations. J. Alloys Compd., 800, 505-511(2019).
[6] K.Bao, T.Cui, D.Duan, D.Li, B.Liu, Z.Liu, F.Tian, W.Wang, S.Wei, H.Yu. Bonding properties of aluminum nitride at high pressure. Inorg. Chem., 56, 7494-7500(2017).
[7] T.Cui, D.Duan, D.Li, Y.Liu, Z.Liu, F.Tian, S.Wei. Nitrogen-rich GaN5 and GaN6 as high energy density materials with modest synthesis condition. Phys. Lett. A, 383, 125859(2019).
[8] I. I.Oleynik, B. A.Steele. Novel potassium polynitrides at high pressures. J. Phys. Chem. A, 121, 8955-8961(2017).
[9] H.Liu, Q.Wei, H.Yan, M.Zhang. A new high-pressure polymeric nitrogen phase in potassium azide. RSC Adv., 5, 11825-11830(2015).
[10] H.Dong, A. R.Oganov, G.Qian, Y.Shen, J.Zhang, Z.Zhou, Q.Zhu. Novel lithium-nitrogen compounds at ambient and high pressures. Sci. Rep., 5, 14204(2015).
[11] Y.Cai, P.Hou, D.Li, L.Lian, B.Liu, B.Wang, S.Wei. Structural phase transition and bonding properties of high-pressure polymeric CaN3. RSC Adv., 8, 4314-4320(2018).
[12] I. I.Oleynik, B. A.Steele, A. S.Williams. Novel rubidium poly-nitrogen materials at high pressure. J. Chem. Phys., 147, 234701(2017).
[13] T.Cui, D.Duan, D.Li, X.Li, B.Liu, Z.Liu, F.Tian, S.Wei. Alkaline-earth metal (Mg) polynitrides at high pressure as possible high-energy materials. Phys. Chem. Chem. Phys., 19, 9246-9252(2017).
[14] J.Lv, Y.Ma, Y.Wang, L.Zhang. Materials discovery at high pressures. Nat. Rev. Mater., 2, 17005(2017).
[15] T.Cui, D.Duan, D.Li, Y.Liu, F.Tian, H.Wang, W.Wang, H.Yu. High-pressure bonding mechanism of selenium nitrides. Inorg. Chem., 58, 2397-2402(2019).
[16] Y.Ma, F.Peng, H.Wang, Y.Wang, Y.Zhang. Stable xenon nitride at high pressures. Phys. Rev. B, 92, 094104(2015).
[17] G.Frapper, B.Huang. Barium–nitrogen phases under pressure: Emergence of structural diversity and nitrogen-rich compounds. Chem. Mater., 30, 7623-7636(2018).
[18] S.Guo, Q.Jiang, J.Li, J.Lin, X.Wang, H.Zhu, Z.Zhu. Stable zigzag and tripodal all-nitrogen anion N44− in BeN2. AIP Adv., 9, 055116(2019).
[19] H.Liu, Y.Ma, F.Peng, Y.Yao. Crystalline LiN5 predicted from first-principles as a possible high-energy material. J. Phys. Chem. Lett., 6, 2363-2366(2015).
[20] P. J.Brothers, W.Henderson, L. C.Perera, P. G.Plieger, O.Raymond. Advances in beryllium coordination chemistry. Coord. Chem. Rev., 352, 264-290(2017).
[21] R.Frankovsky, G. M.Friederichs, M.Mangstl, J.Schmedt auf der Günne, S. B.Schneider, W.Schnick. Electronic and ionic conductivity in alkaline earth diazenides MAEN2 (MAE = Ca, Sr, Ba) and in Li2N2. Chem. Mater., 25, 4149-4155(2013).
[22] R.Frankovsky, S. B.Schneider, W.Schnick. Synthesis of alkaline earth diazenides MAEN2 (MAE = Ca, Sr, Ba) by controlled thermal decomposition of azides under high pressure. Inorg. Chem., 51, 2366-2373(2012).
[23] G.Frapper, B.Huang, A. R.Oganov, S.Yu, Q.Zeng, L.Zhang. Emergence of novel polynitrogen molecule-like species, covalent chains, and layers in magnesium-nitrogen MgxNy phases under high pressure. J. Phys. Chem. C, 121, 11037-11046(2017).
[24] Y.Han, H.Liu, F.Peng, Y.Yao. Exotic stable cesium polynitrides at high pressure. Sci. Rep., 5, 16902(2015).
[25] L.Chen, Z.Hu, J.Li, X.Wang, N.Xu, H.Zhu. Layered polymeric nitrogen in RbN3 at high pressures. Sci. Rep., 5, 16677(2015).
[26] L.Chen, J.Li, H.Lin, X.Wang, H.Zhu. Polymerization of nitrogen in cesium azide under modest pressure. J. Chem. Phys., 141, 044717(2014).
[27] J.Botana, L.Chen, T.Cui, J.Li, H.Liu, M.Miao, X.Wang, M.Zhang, H.Zhu. Polymerization of nitrogen in lithium azide. J. Chem. Phys., 139, 164710(2013).
[28] X.Feng, J.Hao, W.Lei, Y.Li, D.Liu, H.Liu, Y.Ma, S. A. T.Redfern. Route to high-energy density polymeric nitrogen t-N via He–N compounds. Nat. Commun., 9, 722(2018).
[29] L.Liu, G.Yang, S.Zhang, Z.Zhao. Pressure-induced stable BeN4 as a high-energy density material. J. Power Sources, 365, 155-161(2017).
[30] T.Gao, H.Liu, A.Majumdar, F.Peng, Y.Yao, S.Zhu. Stable calcium nitrides at ambient and high pressures. Inorg. Chem., 55, 7550-7555(2016).
[31] J.Li, J.Lin, D.Peng, Q.Wang, X.Wang, H.Zhu. Stable nitrogen-rich scandium nitrides and their bonding features under ambient conditions. Phys. Chem. Chem. Phys., 23, 6863-6870(2021).
[32] M. A.Aslam, Z. J.Ding. Prediction of thermodynamically stable compounds of the Sc–N system under high pressure. ACS Omega, 3, 11477-11485(2018).
[33] L.-P.Ding, X.-F.Huang, C.Lu, P.Shao, F.-H.Zhang. Prediction of molybdenum nitride from first-principle calculations: Crystal structures, electronic properties, and hardness. J. Phys. Chem. C, 122, 21039-21046(2018).
[34] T.-T.Bai, H.-Y.Yan, Y.-Q.Yuan, G.-T.Zhang, Y.-R.Zhao, B.-B.Zheng. First-principles investigations of the structure and physical properties for new TcN crystal structure. Mol. Phys., 114, 1952-1959(2016).
[35] B.Wei, Q.Wei, H.Yan, M.Zhang, C.Zhao. High-pressure phases and pressure-induced phase transition of MoN6 and ReN6. Phys. Lett. A, 383, 2429-2435(2019).
[36] X.Cai, Y.Chen, H.Wang, H.Wang, H.Wang. Novel triadius-like N4 specie of iron nitride compounds under high pressure. Sci. Rep., 8, 10670(2018).
[37] P.Chen, F.Gao, N.Gong, H.Gou, H.Liu, T.Shen, R.Tian, B.Wan, L.Wu, Y.Yao. Prediction of stable iron nitrides at ambient and high pressures with progressive formation of new polynitrogen species. Chem. Mater., 30, 8476-8485(2018).
[38] M.Hasegawa, T.Kikegawa, S.Muto, K.Niwa, K.Soda, K.Suzuki, K.Tatsumi. Discovery of the last remaining binary platinum-group pernitride RuN2. Chem. - Eur. J., 20, 13885-13888(2014).
[39] E.Gregoryanz, R. J.Hemley, H. K.Mao, C.Sanloup, S.Scandolo, A. F.Young. Synthesis of novel transition metal nitrides IrN2 and OsN2. Phys. Rev. Lett., 96, 155501(2006).
[40] D.Dzivenko, M.Eremets, M.Hasegawa, K.Niwa, R.Riedel, K.Suzuki, I.Troyan. High pressure synthesis of marcasite-type rhodium pernitride. Inorg. Chem., 53, 697-699(2014).
[41] J. C.Crowhurst, C. L.Evans, J. L.Ferreira, A. F.Goncharov, P. G.Morrall, A. J.Nelson, B.Sadigh. Synthesis and characterization of the nitrides of platinum and iridium. Science, 311, 1275-1278(2006).
[42] J.Li, M.Miao, L.Sun, X.Wang, H.Zhu. Simple route to metal cyclo-N5− salt: High-pressure synthesis of CuN5. J. Phys. Chem. C, 122, 22339-22344(2018).
[43] R.Dinnebier, M.Jansen, C. L.Schmidt, U.Wedig. Crystal structure and chemical bonding of the high-temperature phase of AgN3. Inorg. Chem., 46, 907-916(2007).
[44] P. R.Briddon, M. R. C.Hunt, S.Krishnamurthy, M.Montalti, M. J.Shaw, L.?iller, K.Svensson, M. G.Wardle. Nitrogen ion irradiation of Au(110): Photoemission spectroscopy and possible crystal structures of gold nitride. Phys. Rev. B, 70, 045414(2004).
[45] G.Jiang, T.Song, X. W.Sun, J. H.Tian, T.Wang. Theoretical investigation on the high-pressure physical properties of ZnN in cubic zinc blende, rock salt, and cesium chloride structures. J. Phys. Chem. Solids, 110, 70-75(2017).
[46] S.Guo, J.Li, J.Lin, Q.Wang, X.Wang, H.Wu, H.Zhu. High-pressure stable phases in mercury azide. Comput. Mater. Sci., 169, 109147(2019).
[47] J. C.Crowhurst, I. I.Oleynik, V. B.Prakapenka, E.Stavrou, B. A.Steele, J. M.Zaug. High-pressure synthesis of a pentazolate salt. Chem. Mater., 29, 735-741(2017).
[48] G.Gaiffe, G.Garbarino, D.Laniel, P.Loubeyre, G.Weck. High-pressure synthesized lithium pentazolate compound metastable under ambient conditions. J. Phys. Chem. Lett., 9, 1600-1604(2018).
[49] I. A.Abrikosov, G.Aprilis, M.Bykov, E.Bykova, I.Chuvashova, N.Dubrovinskaia, L.Dubrovinsky, K.Glazyrin, E.Koemets, I.Kupenko, H. P.Liermann, C.McCammon, M.Mezouar, A. V.Ponomareva, V.Prakapenka, F.Tasnádi. Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains. Nat. Commun., 9, 2756(2018).
[50] J.Binns, P.Dalladay-Simpson, M.-E.Donnelly, E.Gregoryanz, A.Hermann, R. T.Howie, M.Pe?a-Alvarez, M.Wang. Direct reaction between copper and nitrogen at high pressures and temperatures. J. Phys. Chem. Lett., 10, 1109-1114(2019).
[51] A. I.Abrikosov, I. A.Abrikosov, T.Bin Masood, M.Bykov, S.Chariton, N.Dubrovinskaia, L.Dubrovinsky, T.Fedotenko, K.Glazyrin, A. F.Goncharov, M.Hanfland, I.Hotz, M. I.Katsnelson, D.Laniel, M. F.Mahmood, A. V.Ponomareva, V. B.Prakapenka, A. N.Rudenko, J. S.Smith, F.Tasnádi. High-pressure synthesis of Dirac materials: Layered van der Waals bonded BeN4 polymorph. Phys. Rev. Lett., 126, 175501(2021).
[52] K.Bao, T.Cui, D.Duan, D.Li, B.Liu, Z.Liu, F.Tian, W.Wang, S.Wei. A novel polymerization of nitrogen in beryllium tetranitride at high pressure. J. Phys. Chem. C, 121, 9766-9772(2017).
[53] J.Lv, Y.Ma, Y.Wang, L.Zhu. CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun., 183, 2063-2070(2012).
[54] J.Lv, Y.Ma, Y.Wang, L.Zhu. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B, 82, 094116(2010).
[55] K.Burke, M.Ernzerhof, J. P.Perdew. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865-3868(1996).
[56] H. J.Monkhorst, J. D.Pack. ‘Special points for Brillouin-zone integrations’—A reply. Phys. Rev. B, 16, 1748-1749(1977).
[57] J.Furthmüller, G.Kresse. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 11169-11186(1996).
[58] P. E.Bl?chl. Projector augmented-wave method. Phys. Rev. B, 50, 17953-17979(1994).
[59] Y.Kawazoe, Z. Q.Li, K.Parlinski. First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett., 78, 4063-4066(1997).
[60] F.Oba, I.Tanaka, A.Togo. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B, 78, 134106(2008).
[61] S.Nosé. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81, 511-519(1984).
[62] W. G.Hoover. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 31, 1695-1697(1985).
[63] R.Hill. Related content the elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., London, Sect. A, 65, 349-354(1952).
[64] Y.Chang, Q.Zhang. Prediction of detonation pressure and velocity of explosives with micrometer aluminum powders. Cent. Eur. J. Energ. Mater., 9, 77-86(2012).
[65] J. E.Ablard, M. J.Kamlet. Chemistry of detonations. II. Buffered equilibria. J. Chem. Phys., 48, 36-42(1968).
[66] V. L.Deringer, R.Dronskowski, S.Maintz, A. L.Tchougréeff. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem., 37, 1030-1035(2016).
[67] G.Henkelman, E.Sanville, W.Tang. A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter, 21, 084204(2009).
[68] A. I.Boldyrev, B. D.Dunnington, T. R.Galeev, J. R.Schmidt. Solid state adaptive natural density partitioning: A tool for deciphering multi-center bonding in periodic systems. Phys. Chem. Chem. Phys., 15, 5022(2013).
[69] G. A.Olah, G.Rasul, G. K.Surya Prakash. N62+ and N42+ dications and their N12 and N10 azido derivatives: DFT/GIAO-MP2 theoretical studies. J. Am. Chem. Soc., 123, 3308-3310(2001).
[70] L. P.Cheng, Q. S.Li. Aromaticity of square planar N42− in the M2N4 (M = Li, Na, K, Rb, or Cs) species. J. Phys. Chem. A, 107, 2882-2889(2003).
[71] L. P.Cheng, Q. S.Li. N4 ring as a square planar ligand in novel MN4 species. J. Phys. Chem. A, 109, 3182-3186(2005).
[72] H. M.Buck, R. A. J.Janssen, G.van Zandwijk. 6π aromaticity in four-membered rings. J. Am. Chem. Soc., 112, 4155-4164(1990).
[73] L. P.Cheng, Q. S.Li. Theoretical study of nitrogen-rich BeN4 compounds. J. Phys. Chem. A, 108, 665-670(2004).
[74] X. F.Hao, X. J.Liu, J.Meng, Z. J.Wu, H. P.Xiang, E. J.Zhao. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B, 76, 054115(2007).
[75] M.Avalos Borja, M.Moreno Armenta, A.Reyes-Serrato. Ab initio determination of the electronic structure of beryllium-, aluminum-, and magnesium-nitrides: A comparative study. Phys. Rev. B, 62, 4890-4898(2000).
[76] R. J.Needs, C. J.Pickard. High-pressure phases of nitrogen. Phys. Rev. Lett., 102, 125702(2009).
[77] C.Dickinson, M. J.Kamlet. Chemistry of detonations. III. Evaluation of the simplified calculational method for Chapman-Jouguet detonation pressures on the basis of available experimental information. J. Chem. Phys., 48, 43(1968).
[78] X.Li, H.Niu, A. R.Oganov, J.Zhang. Pressure-stabilized hafnium nitrides and their properties. Phys. Rev. B, 95, 020103(R)(2017).
[79] J. P.Agrawal. High Energy Materials: Propellants, Explosives and Pyritechnics(2010).
[80] G. T.Furukawa, M. L.Reilly. Heat capacity and thermodynamic properties of α-beryllium nitride, Be3N2, from 20 to 315 K. J. Res. Natl. Bur. Stand., Sect. A, 74A, 617-629(1970).
[81] T. B.Douglas, W. H.Payne. Measured enthalpy and derived thermodynamic properties of alpha beryllium nitride, Be3N2, from 273 to 1200 K. J. Res. Natl. Bur. Stand., Sect. A, 73A, 471-477(1969).
[82] G. E.Gurr, D.Hall, G. A.Jeffrey. Zur kenntnis des systems Be3N-Si3N4. V. A refinement of the crystal structure of β-beryllium nitride. Z. Anorg. Allg. Chem., 369, 108-112(1969).
[83] S.Chariton, N.Dubrovinskaia, L.Dubrovinsky, T.Fedotenko, D.Laniel, V.Milman, A.Pakhomova, V.Prakapenka, B.Winkler. High-pressure polymeric nitrogen allotrope with the black phosphorus structure. Phys. Rev. Lett., 124, 216001(2020).
[84] N. J.English, M.Li, C.Lin, X.Liu, H.-K.Mao, J. S.Smith, J. S.Tse, B.Wang, W.Yang, X.Yong. Temperature-dependent kinetic pathways featuring distinctive thermal-activation mechanisms in structural evolution of ice VII. Proc. Natl. Acad. Sci. U. S. A., 117, 15437-15442(2020).
[85] H.Dong, S.Li, X.Li, C.Lin, X.Liu, J. S.Smith, J. S.Tse, B.Wang, D.Yang, W.Yang. Temperature- and rate-dependent pathways in formation of metastable silicon phases under rapid decompression. Phys. Rev. Lett., 125, 155702(2020).