Journal of Inorganic Materials, Volume. 36, Issue 10, 1059(2021)
To study the microstructure changes and phase transitions of different depth areas in the YSZ coating caused by corrosion of the calcium magnesium aluminum silicate (CMAS) at high temperature, scanning electron microscope (SEM) and an X-ray diffractometer (XRD), energy-dispersive X-ray spectroscope (EDS) and electron backscatter diffraction (EBSD) were used to characterize and analyze the YSZ coating before and after corrosion. The results show that YSZ coating after high-temperature CMAS corrosion exhibits spalling, dense, light dense and obvious layered structure from top to bottom. The melting/recrystallization phenomenon occurs on the top of the YSZ coating, which causes a phase transition from initial t-ZrO2 particles to m-ZrO2 particles and the degree of the phase transition decreasing from top to bottom. It is also found that the CMAS-induced phase transition mainly occurs at the grain boundaries since the molten CMAS is easier to penetrate and erode along the grain boundaries of the coating.
Get Citation
Copy Citation Text
Wenqi FAN, Xuemei SONG, Yiling HUANG, Chengkang CHANG.
Category: RESEARCH ARTICLE
Received: Jan. 8, 2021
Accepted: --
Published Online: Nov. 26, 2021
The Author Email: CHANG Chengkang (ckchang@sit.edu.cn)