Chinese Optics Letters, Volume. 2, Issue 5, 05271(2004)

Resonating properties of passive spherical optical microcavities

Wen Li and Ruopeng Wang*
Author Affiliations
  • Department of Physics and State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871
  • show less

    As an optically pumped device, the lasing characteristics of a spherical microcavity laser depend on the optical pumping processes. These characteristics can be described in term of the Q factor and the optical field distribution in a microsphere. We derived analytical expressions and carried out numerical calculation for Q factor and optical field. The Q factor is found to be oscillatory functions of the radius of a microsphere and the pumping wavelength, and the pumpingefficiency for a resonating microsphere is much higher than that for an anti-resonating microsphere. Using tunable lasers as pumping sources is suggested in order to achieve a higher pumping efficiency. Numerical calculation on optical fielddistribution in spherical microcavities shows that a well focused Gaussian beam is a suitable incident wave for cavity quantum electrodynamics experiments in which strong confinement of optical field in the center of a microsphere is requested, but higher order spherical wave should be used instead for exciting whispering-gallery-mode (WGM) microsphere lasers, for the purpose of favoring optical energy transferring to WGM in optical microspheres.

    Tools

    Get Citation

    Copy Citation Text

    Wen Li, Ruopeng Wang. Resonating properties of passive spherical optical microcavities[J]. Chinese Optics Letters, 2004, 2(5): 05271

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 4, 2003

    Accepted: --

    Published Online: Jun. 6, 2006

    The Author Email: Ruopeng Wang (rpwang@cis.pku.edu.cn)

    DOI:

    Topics