[1] G.Mourou. Nobel lecture: Extreme light physics and application. Rev. Mod. Phys., 91, 030501(2019).
[2] D.Strickland. Nobel lecture: Generating high-intensity ultrashort optical pulses. Rev. Mod. Phys., 91, 030502(2019).
[3] G.Mourou, D.Strickland. Compression of amplified chirped optical pulses. Opt. Commun., 56, 219(1985).
[4] J.Bromage, T.Butcher, J.-C. F.Chanteloup, E. A.Chowdhury, C. N.Danson, A.Galvanauskas, L. A.Gizzi, C.Haefner, J.Hein, D. I.Hillier, N. W.Hopps, Y.Kato, E. A.Khazanov, R.Kodama, G.Korn, R.Li, Y.Li, J.Limpert, J.Ma, C. H.Nam, D.Neely, D.Papadopoulos, R. R.Penman, L.Qian, J. J.Rocca, A. A.Shaykin, C. W.Siders, C.Spindloe, S.Szatmári, R. M. G. M.Trines, J.Zhu, P.Zhu, J. D.Zuegel. Petawatt and exawatt class lasers worldwide. High Power Laser Eng., 7, e54(2019).
[5] A. A.Andreev, C.Riconda, V. T.Tikhonchuk, S.Weber. Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime. Phys. Plasmas, 13, 053110(2006).
[6] N.Fisch, V.Malkin, G.Shvets. Fast compression of laser beams to highly overcritical powers. Phys. Rev. Lett., 82, 4448(1998).
[7] Y.Avitzour, W.Cheng, N. J.Fisch, M. S.Hur, Y.Ping, S.Suckewer, J. S.Wurtele. Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses. Phys. Rev. Lett., 94, 045003(2005).
[8] D. A.Callahan, L.Divol, S.Dixit, M. J.Edwards, S. H.Glenzer, S. W.Haan, D. E.Hinkel, J. D.Lindl, B. J.MacGowan, P.Michel, J. D.Salmonson, L. J.Suter, C. A.Thomas, S.Weber, E. A.Williams. Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. Phys. Rev. Lett., 102, 025004(2009).
[9] P.Audebert, S.Buffechoux, J.Fuchs, R.Kodama, A.Kon, M.Nakatsutsumi. Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity. Opt. Lett., 35, 2314(2010).
[10] C.Armstrong, D. C.Carroll, R. J.Clarke, R. J.Dance, R. J.Gray, S. J.Hawkes, M.King, P.McKenna, D.Neely, D. J.Robertson, R.Wilson. Ellipsoidal plasma mirror focusing of high power laser pulses to ultrahigh intensities. Phys. Plasmas, 23, 033106(2016).
[11] P.Combis, P.D’Oliveira, D.Garzella, S.Kahaly, A.Leblanc, P.Martin, S.Monchocé, F.Quéré, F.Réau, L.Videau. Optically controlled solid-density transient plasma gratings. Phys. Rev. Lett., 112, 145008(2014).
[12] G.Bonnaud, S.Kahaly, P.Martin, S.Monchocé, F.Quéré, H.Vincenti. Optical properties of relativistic plasma mirrors. Nat. Commun., 5, 3403(2014).
[13] G.Lehmann, K. H.Spatschek. Transient plasma photonic crystals for high-power lasers. Phys. Rev. Lett., 116, 225002(2016).
[14] T.Chapman, C. Y.Chen, L.Divol, C.Goyon, P.Michel, J. D.Moody, B. B.Pollock, J. S.Ross, E.Tubman, D.Turnbull, N.Woolsey. High power dynamic polarization control using plasma photonics. Phys. Rev. Lett., 116, 205001(2016).
[15] C.Aniculaesei, E.Brunetti, C.Ciocarlan, S.Cipiccia, J. M.Dias, B.Ersfeld, J. P.Farmer, D. W.Grant, P.Grant, R.Heathcote, M. S.Hur, D. A.Jaroszynski, N.Lemos, P.Lepipas, C. L. S.Lewis, G. G.Manahan, G.Nersisyan, A.Pukhov, G.Raj, D.Reboredo Gil, A.Subiel, G.Vieux, G. H.Welsh, S. M.Wiggins, X.Yang, S. R.Yoffe. An ultra-high gain and efficient amplifier based on Raman amplification in plasma. Sci. Rep., 7, 2399(2017).
[16] L.Chopineau, A.Denoeud, A.Leblanc, P.Martin, G.Mennerat, F.Quéré. Plasma holograms for ultrahigh-intensity optics. Nat. Phys., 13, 440(2017).
[17] B. E.Blue, T.Chapman, L.Divol, W. H.Dunlop, K. B.Fournier, R. K.Kirkwood, O. L.Landen, R. A.London, B. J.MacGowan, P. A.Michel, J. D.Moody, L. A.Pickworth, M. D.Rosen, D. J.Strozzi, D. P.Turnbull, B. M.Van Wonterghem, S. C.Wilks. Plasma-based beam combiner for very high fluence and energy. Nat. Phys., 14, 80(2018).
[18] M. R.Edwards, N. J.Fisch, Q.Jia, K.Qu. Theory of electromagnetic wave frequency upconversion in dynamic media. Phys. Rev. E, 98, 023202(2018).
[19] F.Amiranoff, R.Berger, M.Blecher, S.Bolanos, M.Chiaramello, J.Fuchs, T.Gangolf, L.Lancia, J.-R.Marquès, C.Riconda, S.Weber, O.Willi. Joule-level energy transfer to sub-ps laser pulses by a plasma-based amplifier. Phys. Rev. X, 13, 021008(2019).
[20] M.Grech, H.Peng, C.Riconda, J. Q.Su, S.Weber. Nonlinear dynamics of laser-generated ion-plasma gratings: A unified description. Phys. Rev. E., 100, 061201(2019).
[21] E. P.Alves, R.Bingham, R. A.Cairns, F.Fiúza, R. A.Fonseca, L. O.Silva, R. M. G. M.Trines, J.Vieira, E.Webb. New criteria for efficient Raman and Brillouin amplification of laser beams in plasma. Sci. Rep., 10, 19875(2020).
[22] H.Peng, C.Riconda, S.Ruan, S.Weber, C.Zhou. Frequency conversion of lasers in a dynamic plasma grating. Phys. Rev. Appl., 15, 054053(2021).
[23] M.Edwards, P.Michel. Plasma transmission gratings for compression of high-intensity laser pulses. Phys. Rev. Appl., 18, 024026(2022).
[24] M. R.Edwards, N. M.Fasano, E.Kur, N.Lemos, P.Michel, J. M.Mikhailova, V. R.Munirov, A.Singh, J. S.Wurtele. Holographic plasma lenses. Phys. Rev. Lett., 128, 065003(2022).
[25] K.Chadt, J.Homola, T.Lastovicka, O.Maliuk, V.Tikhonchuk, S.Weber, T.Wiste. Additive manufactured foam targets for experiments on high-power laser-matter interaction. J. Appl. Phys., 133, 043101(2023).
[26] N. J.Fisch, K.Qu. Generating optical supercontinuum and frequency comb in tenuous plasmas. Matter Radiat. Extremes, 6, 054402(2021).
[27] C.Dorrer, E. M.Hill, J. D.Zuegel. High-energy parametric amplification of spectrally incoherent broadband pulses. Opt. Express, 28, 451(2020).
[28] X.Chen, Y.Cui, P.Du, W.Feng, S.Fu, Y.Gao, Y.Hua, X.Huang, L.Ji, F.Li, X.Li, D.Liu, J.Liu, J.Liu, W.Ma, W.Pei, D.Rao, C.Shan, H.Shi, Z.Sui, X.Sun, T.Wang, L.Xia, T.Zhang, X.Zhao, J.Zhu. Development of low-coherence high-power laser drivers for inertial confinement fusion. Matter Radiat. Extremes, 5, 065201(2020).
[29] M.Chen, W.-Y.Liu, Z.-M.Sheng, S.-M.Weng, J.Zhang, X.-L.Zhu. Generation of single-cycle relativistic infrared pulses at wavelengths above 20 μm from density-tailored plasmas. Matter Radiat. Extremes, 7, 014403(2022).
[30] M.Baudisch, J.Biegert, M.Hemmer, R.Moshammer, M.Pullen, C.Schr?ter, M.Sclafani, A.Senftleben, J.Ullrich, B.Wolter. Strong-field physics with mid-IR fields. Phys. Rev. X, 5, 021034(2015).
[31] E. F. J.Bacon, T. P.Frazer, R. J.Gray, M.King, P.McKenna, R.Wilson. High order modes of intense second harmonic light produced from a plasma aperture. Matter Radiat. Extremes, 7, 054401(2022).
[32] N.Booth, R.Capdessus, Z. E.Davidson, M. J.Duff, B.Gonzalez-Izquierdo, R. J.Gray, S.Hawkes, A.Higginson, M.King, P.McKenna, D.Neely, S. D. R.Williamson, R.Wilson. High order mode structure of intense light fields generated via a laser-driven relativistic plasma aperture. Sci. Rep., 10, 105(2020).
[33] G.Lehmann, K. H.Spatschek. Reflection and transmission properties of a finite-length electron plasma grating. Matter Radiat. Extremes, 7, 054402(2022).
[34] Y.Dai, B.Hu, Z.Li, J.Mu, J.Su, X.Wang, X.Wang, Z.Wu, X.Zeng, Z.Zhang, Q.Zhu, Y.Zuo. Laser compression via fast-extending plasma gratings. Matter Radiat. Extremes, 7, 064402(2022).
[35] A.Korzhimanov, N.Mikheytsev. Generation of synchronized high-intensity x-rays and mid-infrared pulses by Doppler-shifting of relativistically intense radiation from near-critical-density plasmas. Matter Radiat. Extremes, 8, 024001(2023).
[36] F.Albert, A. G. R.Thomas. Applications of laser wakefield accelerator-based light sources. Plasma Phys. Controlled Fusion, 58, 103001(2016).
[37] B.Hu, Z.Li, J.Mu, X.Wang, X.Wang, Z.Wu, X.Zeng, Y.Zuo. Ultra-intense few-cycle infrared laser generation by fast-extending plasma grating. Matter Radiat. Extremes, 8, 014401(2023).
[38] D.Haberberger, C.Joshi, S.Tochitsky. Fifteen terawatt picosecond CO2 laser system. Opt. Express, 18, 17865(2010).