Infrared and Laser Engineering, Volume. 47, Issue 10, 1020004(2018)

Time-resolved Raman spectroscopy of trinitrotoluene detected by Silicon Photomultiplier

Zhang Chunling*, Wang Kaijun, and Pang Qing
Author Affiliations
  • [in Chinese]
  • show less

    Silicon Photomultiplier (SiPM) is a new type of solid state photodetector developed rapidly in recent decades, and has the potential to replace photo multiplier tube(PMT) in the Raman detection. A time-resolved Raman spectroscopy system based on a Silicon Photomultiplier (SiPM) was established in order to limit the influence of intense fluorescence on Raman spectroscopy, and alleviate the high dark count rate(DCR) problem of the SiPM. The variation of the Peak-to-Background Ratio (PBR) of Raman peaks along with counting time was investigated using trinitrotoluene(TNT) as the sample. Results indicate that with counting time increasing, the PBR of Raman peaks is increasing first and then decreasing, finally changing slowly. When counting time is 400 ps, a best PBR is achieved for the Raman peaks. The results are superior to that achieved by the commercial Raman spectrometers and the methods used in the literature. Also, the dark counts system collected are comparable to PMT. The method proposed in the paper is capable of reducing the high fluorescence background and the effects of SiPM′s high DCR to a great extent, facilitating a marked improvement in the Raman PBR.

    Tools

    Get Citation

    Copy Citation Text

    Zhang Chunling, Wang Kaijun, Pang Qing. Time-resolved Raman spectroscopy of trinitrotoluene detected by Silicon Photomultiplier[J]. Infrared and Laser Engineering, 2018, 47(10): 1020004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 光电器件及应用

    Received: May. 10, 2018

    Accepted: Jun. 20, 2018

    Published Online: Nov. 25, 2018

    The Author Email: Chunling Zhang (lingzi0537@163.com)

    DOI:10.3788/irla201847.1020004

    Topics