Journal of Inorganic Materials, Volume. 37, Issue 6, 603(2022)
Piezoelectric actuators have advantages of fast response, high positioning accuracy, small size, and have received widespread attention in the field of precision drives. Lead-based piezoelectric actuators occupy the main commercial market. To avoid the use of the harmful element lead, a lead-free piezoelectric materials and actuators must be developed. Among them, bismuth sodium titanate (Bi0.5Na0.5)TiO3 (BNT), was reported but it has some disadvantages of higher driving voltage, larger hysteresis, and poor temperature stability. To optimize the strain performance of the lead-free actuator, this study adopted the solid-phase reaction method to prepare (1-x) {0.76(Bi0.5Na0.5)TiO3- 0.24SrTiO3}-xNaNbO3 (BNT-ST-xNN, x=0-0.03) lead-free ferroelectric ceramics, systematically studied its field- induced strain performance. The results show that when x=0.01, the strain value of the ceramic can reach 0.278% under a low electric field (E = 4 kV/mm), and the piezoelectric coefficient d*33 is as high as 695 pm/V. Meanwhile, the ceramic is at the non-ergodic/ergodic relaxation phase boundary, and the electric field induced relaxor-ferroelectric phase transition leads to large field-induced strain. Compared with x=0.01, the strain value at x=0.02 is 0.249%, which is slightly reduced, but the hysteresis is significantly reduced to 43% of the comparator. In addition, the strain remains stable in the temperature range of 25-100 ℃. This study shows that introduction of SrTiO3 and NaNbO3 into BNT can increase the field-induced strain value while maintaining a low driving voltage and good temperature stability, indicating suitable for the development of piezoelectric actuators.
Get Citation
Copy Citation Text
Huiping YANG, Xuefan ZHOU, Haojie FANG, Xiaoyun ZHANG, Hang LUO, Dou ZHANG.
Category: RESEARCH ARTICLE
Received: Jul. 16, 2021
Accepted: --
Published Online: Jan. 10, 2023
The Author Email: ZHANG Dou (dzhang@csu.edu.cn)