Acta Photonica Sinica, Volume. 48, Issue 10, 1048001(2019)

Propagation of Nonlocal Vector Solitons under Gauss Barrier or Trap

WENG Yuan-hang1,*... WANG Hong1,2 and CHEN Pei-jun1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less

    The propagation of vector solitons in nonlocal nonlinear media with a Gauss barrier or a Gauss trap is described by the coupled nonlocal nonlinear Schrodinger equations with Gauss-type linear potential. These equations are numerically calculated by the square operator method, and the propagation of vector solitons is simulated by the step-step method. In nonlocal nonlinear bulk media, the components of out-of-phase vector solitons are always separated spontaneously, and the repulsion between them can be suppressed by a Gauss barrier. The components of in-phase vector solitons are always fused spontaneously, and the attraction between them can be suppressed by a Gauss trap. By quantitatively analyzing the relationship between the barrier heigh/depth or width and the distance between two components of vector solitons at the normalized transmission distance of 500, it is found that if the heigh/depth and width of barrier/trap are too large or too small, Gauss linear potential can not suppress this process, or even worsen it. For out-of-phase solitons, the Gauss barrier that can effectively suppress the separation should be set to 1.10 in height and 1.00 in width. For in-phase solitons, the Gauss potential well that can effectively suppress the fusion should be set to -1.50 in depth and 1.00 in width. Results in this paper may benefit the future researches about all-optical switch, optical logic-gate, optical computing and other optical control technologies.

    Tools

    Get Citation

    Copy Citation Text

    WENG Yuan-hang, WANG Hong, CHEN Pei-jun. Propagation of Nonlocal Vector Solitons under Gauss Barrier or Trap[J]. Acta Photonica Sinica, 2019, 48(10): 1048001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Aug. 15, 2019

    Accepted: --

    Published Online: Nov. 14, 2019

    The Author Email: Yuan-hang WENG (phdwengyh@mail.scut.edu.cn)

    DOI:10.3788/gzxb20194810.1048001

    Topics