Acta Optica Sinica, Volume. 40, Issue 11, 1101001(2020)

Propagation Properties of Radially-Polarized Vector Beams Under a Turbulent Atmosphere

Jianqiang Zhang1,2, Yanwang Zhai1,2, Shiyao Fu1,2, and Chunqing Gao1,2、*
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing 100081, China
  • show less

    Based on the von Karman spectral model, a step-by-step phase screen method is employed in this study to simulate the propagation characteristics of radially-polarized vector beams with different orders in the Kolmobarov’s atmospheric turbulence. Furthermore, the Stokes vectors, scintillation index, and radial deviations of gravity centers of beams are analyzed. The simulation results show that the maximum discriminating distance of the ring features of the radially-polarized vector beam under an atmospheric turbulence is larger than that of the scalar vortex beam, and its scintillation index and the radial deviation of the gravity center of beams are smaller than those of scalar vortex beams. High-order beam can maintain its ring shape features at a larger distance than that of a low-order beam, and the scintillation index and the radial deviation of gravity center of beam for high-order beams are observed to be smaller. The Stokes vectors images of the radially-polarized vector beams get diffused and distorted. In conclusion, the radially-polarized vector beams have better turbulence resistance than the scalar vortex beams under an atmospheric turbulence, and high-order beams exhibit better properties than low-order beams in some way.

    Tools

    Get Citation

    Copy Citation Text

    Jianqiang Zhang, Yanwang Zhai, Shiyao Fu, Chunqing Gao. Propagation Properties of Radially-Polarized Vector Beams Under a Turbulent Atmosphere[J]. Acta Optica Sinica, 2020, 40(11): 1101001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Dec. 25, 2019

    Accepted: Feb. 27, 2020

    Published Online: Jun. 10, 2020

    The Author Email: Gao Chunqing (gao@bit.edu.cn)

    DOI:10.3788/AOS202040.1101001

    Topics