NUCLEAR TECHNIQUES, Volume. 46, Issue 4, 040003(2023)

Extremely strong magnetic field and QCD phase diagram

Gaoqing CAO*
Author Affiliations
  • School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519088, China
  • show less

    Several experiments are being conducted at heavy-ion colliders around the world to determine the location of the proposed critical end point of quantum chromodynamics (QCD) in the T-μB phase diagram. As the presence of a very strong magnetic field is relevant to peripheral heavy-ion collisions, magnetars, and the early Universe, it is important to investigate the effect of a high magnetic field strength on QCD phase diagrams. We summarize the recent status and new developments in studies investigating QCD phase transitions under an extremely strong magnetic field. By doing so, we believe that this work will promote both theoretical and experimental research in this field. TheT-B phase diagrams are produced by Lattice QCD simulations. Other phase diagrams (E-B, μB-B,μI-B, andΩ-B) are mainly studied by using the chiral effective Nambu Jona-Lasinio model. A rotating magnetic field is adopted for the study of color superconductivity. The Ginzburg-Landau approximation is used to studyπ-superfluidity andρ-superconductivity in a very strong magnetic field. Physical effects, besides a magnetic fieldB, can also be measured when sketching a QCD phase diagram, such as temperatureT, strong electric fieldE, chemical potentialsμ, and rotational angular velocityΩ. We present five QCD phase diagrams: T-B,E-B, μB-B,μI-B, andΩ-B. The following phases are present in many (if not all) of the five QCD phase diagrams: chiral symmetry breaking, chiral symmetry restoration, inhomogeneous chiral phase, π0-condensation,π-superfluidity,ρ-superconductivity, and color superconductivity. The running of the coupling constant with magnetic field is consistent with the decrease of the pseudo-critical deconfinement temperature, providing a natural explanation for the inverse magnetic catalysis effect. We also found that a chiral anomaly induces pseudoscalar condensation in a parallel electromagnetic field, and that there appears to be a chiral-symmetry restoration phase in theE-B phase diagram. Without consideration of confinement, color superconductivity is typically favored for large baryon chemical potential; however, chiral density wave is also possible in the largeB and relatively smallμB region of the phase diagram. In an external magnetic field, theπ-superfluid with finite isospin chemical potential acts similarly to a Type-II superconductor with finite electric chemical potential. Bothπ-superfluidity andρ-superconductivity are possible in a parallel magnetic field and rotation, but the latter is more favored for largerΩ particles.

    Tools

    Get Citation

    Copy Citation Text

    Gaoqing CAO. Extremely strong magnetic field and QCD phase diagram[J]. NUCLEAR TECHNIQUES, 2023, 46(4): 040003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Dec. 5, 2022

    Accepted: --

    Published Online: Apr. 27, 2023

    The Author Email:

    DOI:10.11889/j.0253-3219.2023.hjs.46.040003

    Topics