Infrared and Laser Engineering, Volume. 46, Issue 4, 418001(2017)

Real-time correction of dynamic thermal differential of supersonic conformal optical system

Li Yanzhang1、*, Huang Changchun2, Zhang Yunqiang3, Niu Yajun1, Song Dalin1, and Chang Jun1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less

    With the development of science and technology, there are more and more high requirements of imaging quality for high speed aircraft. The effect of friction heating on imaging quality of supersonic speed system with a conformal dome was studied. An conformal optical system with a conformal dome which had a length-to-diameter ratio of 1 was designed. The system had two wedge mirrors for field scanning, which provided a instantaneous FOV of 4° and a scanning FOV of 60°. A conformal fairing aerodynamic simulation experiment with the speed of Mach 3 and attack angle of 0° was finished. The surface temperature distribution of conformal dome in supersonic speed was obtained. Through the fluid-solid interaction, surface variation of different periods was calculated. The thermal surface variation was fitted into Zernike coefficients and applied to conformal optical system. The analysis results showed that the dynamic aberration introduced by high speed flight affected the imaging quality of optical system. In order to guarantee the system precision, a Spatial Light Modulator (SLM) was used to correct the aberration of different periods. After correction, system imaging quality was close to the diffraction limit, which had realized thermal aberration correction of conformal dome in supersonic speed flight. This study has certain significance to the development of high precision aircraft.

    Tools

    Get Citation

    Copy Citation Text

    Li Yanzhang, Huang Changchun, Zhang Yunqiang, Niu Yajun, Song Dalin, Chang Jun. Real-time correction of dynamic thermal differential of supersonic conformal optical system[J]. Infrared and Laser Engineering, 2017, 46(4): 418001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 光学设计及仿真

    Received: Aug. 7, 2016

    Accepted: Sep. 10, 2016

    Published Online: Jun. 30, 2017

    The Author Email: Yanzhang Li (fisheyesopen@163.com)

    DOI:10.3788/irla201746.0418001

    Topics