[1] L PONTES D S, M PONTES F, J CHIQUITO A. Investigation of the structural, optical and dielectric properties of highly (100)-oriented (Pb0.60Ca0.20Sr0.20)TiO3 thin films on LaNiO3 bottom electrode. Materials Science and Engineering: B, 185, 123-128(2014).
[2] L PONTES D S, A CAPELI R, L GARZIM M. 100) and Pt/Ti/SiO2/Si substrates. Materials Letters, 121, 93-96(2014).
[3] J ZHU, L ZHENG, Y ZHANG. Fabrication of epitaxial conductive LaNiO3 films on different substrates by pulsed laser ablation. Materials Chemistry and Physics, 100, 451-456(2006).
[4] S CHEN M, B WU T, M WU J. Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films. Applied Physics Letters, 68, 1430-1432(1996).
[5] G CHAE B, S YANG Y, H LEE S. Comparative analysis for the crystalline and ferroelectric properties of Pb(Zr,Ti)O3 thin films deposited on metallic LaNiO3 and Pt electrodes. Thin Solid Films, 410, 107-113(2002).
[6] L LI W, D ZHANG T, D XU. LaNiO3 seed layer induced enhancement of piezoelectric properties in (100)-oriented (1-x)BZT-xBCT thin films. Journal of the European Ceramic Society, 35, 2041-2049(2015).
[7] J WANG, B NEATON J, H ZHENG. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 299, 1719-1722(2003).
[8] H LEE J, P MURUGAVEL, H RYU. Epitaxial stabilization of a new multiferroic hexagonal phase of TbMnO3 thin films. Advanced Materials, 18, 3125-3129(2006).
[9] R SCHERWITZL, S GARIGLIO, M GABAY. Metal- insulator transition in ultrathin LaNiO3 films. Physical Review Letters, 106, 246403(2011).
[10] P LIU, X NING. Anisotropy of core-level spectra and the correlation with transport properties of epitaxial lanthanum nickel oxide thin films. Physica B: Condensed Matter, 589, 412199(2020).
[11] P CHEN, Y XU S, Z ZHOU W. In situ reflection high-energy electron diffraction observation of epitaxial LaNiO3 thin films. Journal of Applied Physics, 85, 3000-3002(1999).
[12] P MAMBRINI G, R LEITE E, T ESCOTE M. Structural, microstructural, and transport properties of highly oriented LaNiO3 thin films deposited on SrTiO3(100) single crystal. Journal of Applied Physics, 102, 043708(2007).
[13] R CHO C, A PAYNE D, L CHO S. Solution deposition and heteroepitaxial crystallization of LaNiO3 electrodes for integrated ferroelectric devices. Applied Physics Letters, 71, 3013-3015(1997).
[14] L FEI, M NAEEMI, G ZOU. Chemical solution deposition of epitaxial metal-oxide nanocomposite thin films. Chemical Record, 13, 85-101(2013).
[15] C GOH P, K YAO, Z CHEN. Reaction mechanisms of ethylenediaminetetraacetic acid and diethanolamine in the precursor solution for producing (K, Na)NbO3 thin films with outstanding piezoelectric properties. The Journal of Physical Chemistry C, 116, 15550-15556(2012).
[16] X JIA Q, M MCCLESKEY T, K BURRELL A. Polymer- assisted deposition of metal-oxide films. Nature Materials, 3, 529-532(2004).
[17] Y LIN, S LEE J, H WANG. Structural and dielectric properties of epitaxial Ba1-xSrxTiO3 films grown on LaAlO3 substrates by polymer-assisted deposition. Applied Physics Letters, 85, 5007-5009(2004).
[18] M LUO H, Y WANG H, X BI Z. Epitaxial ternary nitride thin films prepared by a chemical solution method. Journal of the American Chemical Society, 130, 15224-15225(2008).
[19] G ZOU, H LUO, Y ZHANG. A chemical solution approach for superconducting and hard epitaxial NbC film. Chemical Communications, 46, 7837-7839(2010).
[20] P KUMAH D, H NGAI J, L KORNBLUM. Epitaxial oxides on semiconductors: from fundamentals to new devices. Advanced Functional Materials, 30, 1901597(2019).
[21] K BURRELL A, T MARK MCCLESKEY, X JIA Q. Polymer assisted deposition. Chemical Communications, 11, 1271-1277(2008).
[22] M VILA-FUNGUEIRIÑO J, B RIVAS-MURIAS, J RUBIO- ZUAZO. Polymer assisted deposition of epitaxial oxide thin films. Journal of Materials Chemistry C, 6, 3834-3844(2018).
[23] H WANG, C FRONTERA, J HERRERO-MARTIN. Aqueous chemical solution deposition of functional double perovskite epitaxial thin films. Chemistry, 26, 9338-9347(2020).
[24] H YANG E, J MOON D. Synthesis of LaNiO3 perovskite using an EDTA-cellulose method and comparison with the conventional pechini method: application to steam CO2 reforming of methane. RSC Advances, 6, 112885-112898(2016).
[25] G WANG, Y LING, X LU. A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. Nanoscale, 5, 4129-4133(2013).
[26] K TSUBOUCHI, I OHKUBO, H KUMIGASHIRA. Epitaxial growth and surface metallic nature of LaNiO3 thin films. Applied Physics Letters, 92, 262109(2008).
[27] B HE, Z WANG. Effect of substrate temperature on microstructure and electrical properties of LaNiO3 films grown on SiO2/Si substrates by pulsed laser deposition under a high oxygen pressure. Applied Physics A, 122, 905(2016).
[28] J SON, P MOETAKEF, M LEBEAU J. Low-dimensional mott material: transport in ultrathin epitaxial LaNiO3 films. Applied Physics Letters, 96, 062114(2010).
[29] Y DOBIN A, R NIKOLAEV K, N KRIVOROTOV I. Electronic and crystal structure of fully strained LaNiO3 films. Physical Review B, 68, 113408(2003).
[30] M ZHU, P KOMISSINSKIY, A RADETINAC. Effect of composition and strain on the electrical properties of LaNiO3 thin films. Applied Physics Letters, 103, 141902(2013).
[31] S MIYAKE, S FUJIHARA, T KIMURA. Characteristics of oriented LaNiO3 thin films fabricated by the Sol-Gel method. Journal of the European Ceramic Society, 21, 1525-1528(2001).