Journal of Inorganic Materials, Volume. 34, Issue 6, 641(2019)
High-k composites have been actively pursued in the past few years for potential applications in embedded capacitors and energy-storage devices. In this study, Ag@TiO2 core@shell particles were synthesized by a hydrolysis from titanate alkoxides at room temperature. Composites filled with the particle fillers were characterized for I/V, dielectric and energy-storage characteristics. Mechanisms of influences of Ag@TiO2 fillers on dielectric properties of composites were investigated. Scanning electron microscopy and energy dispersive spectra exhibit that the synthesized Ag@TiO2 particles have spherical and fully-coated core@shell structures. X-ray diffraction pattern confirms the phase of Ag and TiO2 in the particles. The polydimethylsiloxane composites filled with Ag@TiO2 fillers exhibit a small leakage current of 10 -8A/cm 2, a high dielectric permittivity of 108, and a very low dielectric loss of 0.2%, and a large energy storage density of 8.58×10 -3J/cm 3. Theoretical model containing effective medium theory (EMT) and Maxwell theory were used to compare with experimental results, and interfacial polarizations were proposed to enhance the permittivities of the composites. The composites filled with Ag@TiO2 fillers show potential applications in the embedded capacitors.
Get Citation
Copy Citation Text
Gang JIAN, Mei-Rui LIU, Chen ZHANG, Hui SHAO.
Category: RESEARCH PAPER
Received: Aug. 13, 2018
Accepted: --
Published Online: Sep. 24, 2021
The Author Email: