Infrared and Laser Engineering, Volume. 50, Issue 8, 20210355(2021)

High-power, few-cycle 2 μm laser pulse generation based on soliton self-compression (Invited)

Tingting Yang, Hongshan Chen, Heyan Liu, Jingjie Hao, and Jinwei Zhang*
Author Affiliations
  • School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less

    High-power 2 μm lasers with few-cycle pulse duration have enabled diverse and important applications ranging from nonlinear frequency conversion, laser spectroscopy to medicine. Soliton self-compression is an effective scheme to deliver such pulses, which is driven by a high-power 2 μm laser source with relatively longer pulse duration. In this work, the soliton self-compression process was realized in a large-mode-area photonic crystal fiber(PCF) driven by a mode-locked Ho:YAG thin-disk oscillator, which delivered three-cycle laser pulses at the center wavelength of 2 μm with an average power of 10.2 W. The pulse duration and spectrum of the pulses were measured by a frequency-resolved optical gating(FROG) apparatus, matching well with the simulation results.

    Tools

    Get Citation

    Copy Citation Text

    Tingting Yang, Hongshan Chen, Heyan Liu, Jingjie Hao, Jinwei Zhang. High-power, few-cycle 2 μm laser pulse generation based on soliton self-compression (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210355

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue—ultrafast and ultraintense mid-infrared laser technology

    Received: May. 30, 2021

    Accepted: --

    Published Online: Nov. 2, 2021

    The Author Email: Zhang Jinwei (jinweizhang@hust.edu.cn)

    DOI:10.3788/IRLA20210355

    Topics