Infrared and Laser Engineering, Volume. 44, Issue 1, 96(2015)

Quantitative analysis of the element iron in aluminum alloy using LIBS

Zhao Xiaoxia1、*, Luo Wenfeng2, Wang Hongying1, Yang Senlin1, Zhu Haiyan2, Li Shuli1, Fu Fuxing1, and Li Yuanyuan1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less

    In order to precisely analyze electron temperature and electron density of aluminum alloy, the Laser Induced Breakdown Spectroscopy was adopted. The second harmonic of a pulsed Nd:YAG laser (532 nm) has been used for the ablation of aluminum alloy E311 in air at atmospheric pressure and the laser-induced plasma characteristics were examined in detail. The electron density of 4.3×1016 cm-3 was inferred from the Stark broadening(0.12 nm) of the profile of Fe(I) 381.59 nm. In order to minimize relative errors in calculation of the electron temperature, an improved iterative Boltzmann plot method with eight iron lines (370.56, 386.55, 387.25, 426.05, 427.18, 430.79, 432.57, 440.48 nm) is used. Experimental results show that the electron temperature is 8 699 K with the regression coefficient of 0.999. The calibration curve for iron based on Fe(I) 404.58 nm was established using a set of six samples of standard aluminum alloy (E311, E312, E313, E314, E315, E316) and the detection limit was 0.077 9 wt%. The plasma was verified to be optically thin and in local thermodynamic equilibrium based on the experimental results.

    Tools

    Get Citation

    Copy Citation Text

    Zhao Xiaoxia, Luo Wenfeng, Wang Hongying, Yang Senlin, Zhu Haiyan, Li Shuli, Fu Fuxing, Li Yuanyuan. Quantitative analysis of the element iron in aluminum alloy using LIBS[J]. Infrared and Laser Engineering, 2015, 44(1): 96

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 激光与光电子技术应用

    Received: May. 9, 2014

    Accepted: Jun. 14, 2014

    Published Online: Jan. 26, 2016

    The Author Email: Xiaoxia Zhao (15029888059@126.com)

    DOI:

    Topics