[1] D. P.Stevenson. The strengths of chemical bonds. J. Am. Chem. Soc., 77, 2350(1955).
[2] R.Boehler, D. A.Dzivenko, M. I.Eremets, A. G.Gavriliuk, I. A.Trojan. Single-bonded cubic form of nitrogen. Nat. Mater., 3, 558-563(2004).
[3] J. C.Crowhurst, I. I.Oleynik, V. B.Prakapenka, E.Stavrou, B. A.Steele, J. M.Zaug. High-pressure synthesis of a pentazolate salt. Chem. Mater., 29, 735-741(2017).
[4] H.Lin, M.Miao, Y.Sun, E.Zurek. Chemistry under high pressure. Nat. Rev. Chem., 4, 508-527(2020).
[5] C.Mailhiot, A. K.McMahan, L. H.Yang. Polymeric nitrogen. Phys. Rev. B, 46, 14419-14435(1992).
[6] K. O.Christe, J. A.Sheehy, F. S.Tham, A.Vij, V.Vij, W. W.Wilson. Polynitrogen chemistry. Synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of N5+. J. Am. Chem. Soc., 123, 6308-6313(2001).
[7] G.Gaiffe, G.Garbarino, D.Laniel, P.Loubeyre, G.Weck. High-pressure synthesized lithium pentazolate compound metastable under ambient conditions. J. Phys. Chem. Lett., 9, 1600-1604(2018).
[8] X.Feng, J.Hao, W.Lei, Y.Li, D.Liu, H.Liu, Y.Ma, S. A. T.Redfern. Route to high-energy density polymeric nitrogen t-N via He–N compounds. Nat. Commun., 9, 722(2018).
[9] S.Fu, E.Greenberg, J. F.Lin, J.Liu, V. B.Prakapenka, N. P.Salke, J.Sun, K.Xia, Y.Zhang. Tungsten hexanitride with single-bonded armchairlike hexazine structure at high pressure. Phys. Rev. Lett., 126, 065702(2021).
[10] M.Kim, J.Smith, D.Tomasino, C.-S.Yoo. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity. Phys. Rev. Lett., 113, 205502(2014).
[11] G.Geneste, D.Laniel, P.Loubeyre, M.Mezouar, G.Weck. Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa. Phys. Rev. Lett., 122, 066001(2019).
[12] S.Chariton, N.Dubrovinskaia, L.Dubrovinsky, T.Fedotenko, D.Laniel, V.Milman, A.Pakhomova, V.Prakapenka, B.Winkler. High-pressure polymeric nitrogen allotrope with the black phosphorus structure. Phys. Rev. Lett., 124, 216001(2020).
[13] A. A.Adeleke, H.Gou, C.Ji, B.Li, W.Liu, H. K.Mao, W. L.Mao, Y.Meng, V. B.Prakapenka, G.Shen, J. S.Smith, B.Wan, L.Yang, Y.Yao. Nitrogen in black phosphorus structure. Sci. Adv., 6, eaba9206(2020).
[14] H.Liu, Y.Ma, F.Peng, Y.Yao. Crystalline LiN5 predicted from first-principles as a possible high-energy material. J. Phys. Chem. Lett., 6, 2363-2366(2015).
[15] T.Gao, H.Liu, A.Majumdar, F.Peng, Y.Yao, S.Zhu. Stable calcium nitrides at ambient and high pressures. Inorg. Chem., 55, 7550-7555(2016).
[16] I. I.Oleynik, B. A.Steele. Sodium pentazolate: A nitrogen rich high energy density material. Chem. Phys. Lett., 643, 21-26(2016).
[17] B.Hu, M.Lu, C.Sun, C.Yu, C.Zhang. Synthesis and characterization of the pentazolate anion cyclo-N5− in (N5)6(H3O)3(NH4)4Cl. Science, 355, 374-376(2017).
[18] Q.Lin, M.Lu, C.Shen, P.Wang, Q.Wang, Y.Xu. A series of energetic metal pentazolate hydrates. Nature, 549, 78-81(2017).
[19] Y.Cai, P.Hou, D.Li, L.Lian, B.Liu, B.Wang, S.Wei. Structural phase transition and bonding properties of high-pressure polymeric CaN3. RSC Adv., 8, 4314-4320(2018).
[20] G.Frapper, B.Huang. Barium–nitrogen phases under pressure: Emergence of structural diversity and nitrogen-rich compounds. Chem. Mater., 30, 7623-7636(2018).
[21] T.Cui, D.Duan, D.Li, Y.Liu, Z.Liu, F.Tian. Metallic and anti-metallic properties of strongly covalently bonded energetic AlN5 nitrides. Phys. Chem. Chem. Phys., 21, 12029-12035(2019).
[22] H.Gao, C.Liu, J.Sun, Q.Wu, K.Xia, J.Yuan, X.Zheng. Pressure-stabilized high-energy-density alkaline-earth-metal pentazolate salts. J. Phys. Chem. C, 123, 10205-10211(2019).
[23] H.Gao, C.Liu, J.Sun, Q.Wu, K.Xia, J.Yuan, X.Zheng. Predictions on high-power trivalent metal pentazolate salts. J. Phys. Chem. Lett., 10, 6166-6173(2019).
[24] T.Bi, Y.Du, L.Gao, M.Lu, Y.Tian, X.Xu, Y.Yan, D.Zhang, M.Zhang, S.Zhang. Predicted crystal structures of titanium nitrides at high pressures. Comput. Mater. Sci., 180, 109720(2020).
[25] B.Liu, X.Shi, Z.Yao. New high pressure phases of the Zn–N system. J. Phys. Chem. C, 124, 4044-4049(2020).
[26] G.Frapper, F.Guégan, R.Larhlimi, H.Valencia, B.Wang. Prediction of novel tin nitride SnxNy phases under pressure. J. Phys. Chem. C, 124, 8080-8093(2020).
[27] C.Niu, X.Wang, Z.Zeng, H.Zhang, J.Zhang, J.Zhao. Polymerization of nitrogen in nitrogen–fluorine compounds under pressure. J. Phys. Chem. Lett., 12, 5731-5737(2021).
[28] J.Sun, J.Wu, K.Xia, J.Yuan. High-energy-density pentazolate salts: CaN10 and BaN10. Sci. China: Phys., Mech. Astron., 64, 218211(2021).
[29] G.Frapper, B.Huang, A. R.Oganov, S.Yu, Q.Zeng, L.Zhang. Emergence of novel polynitrogen molecule-like species, covalent chains, and layers in magnesium–mitrogen MgxNy under high pressure. J. Phys. Chem. C, 121, 11037-11046(2017).
[30] L.Liu, G.Yang, S.Zhang, Z.Zhao. Pressure-induced stable BeN4 as a high-energy density material. J. Power Sources, 365, 155-161(2017).
[31] P.Chen, F.Gao, N.Gong, H.Gou, H.Liu, T.Shen, R.Tian, B.Wan, L.Wu, Y.Yao. Prediction of stable iron nitrides at ambient and high pressures with progressive formation of new polynitrogen species. Chem. Mater., 30, 8476-8485(2018).
[32] B.Liu, B.-B.Liu, X.-H.Shi, Z.Yao. Pressure-stabilized new phase of CaN4. Chin. Phys. Lett., 37, 047101(2020).
[33] H.Li, Z.Li, B.Liu, S.Niu, X.Shi, Z.Yao. New cadmium–nitrogen compounds at high pressures. Inorg. Chem., 60, 6772-6781(2021).
[34] I. A.Abrikosov, G.Aprilis, M.Bykov, E.Bykova, I.Chuvashova, N.Dubrovinskaia, L.Dubrovinsky, K.Glazyrin, E.Koemets, I.Kupenko, H. P.Liermann, C.McCammon, M.Mezouar, A. V.Ponomareva, V.Prakapenka, F.Tasnádi. Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains. Nat. Commun., 9, 2756(2018).
[35] M.Bykov, E.Bykova, N.Dubrovinskaia, L.Dubrovinsky, T.Fedotenko, E.Koemets, D.Laniel, B.Winkler. Synthesis of magnesium-nitrogen salts of polynitrogen anions. Nat. Commun., 10, 4515(2019).
[36] A. I.Abrikosov, I. A.Abrikosov, T.Bin Masood, M.Bykov, S.Chariton, N.Dubrovinskaia, L.Dubrovinsky, T.Fedotenko, K.Glazyrin, A. F.Goncharov, M.Hanfland, I.Hotz, M. I.Katsnelson, D.Laniel, M. F.Mahmood, A. V.Ponomareva, V. B.Prakapenka, A. N.Rudenko, J. S.Smith, F.Tasnádi. High-pressure synthesis of Dirac materials: Layered van der Waals bonded BeN4 polymorph. Phys. Rev. Lett., 126, 175501(2021).
[37] I. A.Abrikosov, M.Bykov, E.Bykova, S.Chariton, L.Dubrovinsky, A. F.Goncharov, M. F.Mahmood, A. V.Ponomareva, V. B.Prakapenka. Stabilization of polynitrogen anions in tantalum–nitrogen compounds at high pressure. Angew. Chem., Int. Ed., 60, 9003-9008(2021).
[38] I. A.Abrikosov, G.Aprilis, M.Bykov, E.Bykova, N.Dubrovinskaia, L.Dubrovinsky, T.Fedotenko, K.Glazyrin, E.Koemets, H.-P.Liermann, A. V.Ponomareva, F.Tasnádi, J.Tidholm. High-pressure synthesis of a nitrogen-rich inclusion compound ReN8·xN2 with conjugated polymeric nitrogen chains. Angew. Chem., Int. Ed., 57, 9048-9053(2018).
[39] I. A.Abrikosov, M.Bykov, E.Bykova, S.Chariton, N.Dubrovinskaia, L.Dubrovinsky, T.Fedotenko, A. F.Goncharov, M.Hanfland, S.Khandarkhaeva, H. P.Liermann, M.Mahmood, A. V.Ponomareva, V.Prakapenka, P.Sedmak, F.Tasnádi, J.Tidholm. High-pressure synthesis of metal–inorganic frameworks Hf4N20·N2, WN8·N2, and Os5N28·3N2 with polymeric nitrogen linkers. Angew. Chem., Int. Ed., 59, 10321-10326(2020).
[40] H.Gao, C.Liu, J.Sun, H.-T.Wang, K.Xia, D.Xing, J.Yuan. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search. Sci. Bull., 63, 817-824(2018).
[41] H.Gao, Y.Han, J.Sun, J.Wang. Enhancing crystal structure prediction by decomposition and evolution schemes based on graph theory. Fundam. Res., 1, 466-471(2021).
[42] H.Gao, Z.Guo, J.Sun, J.Wang. Determining dimensionalities and multiplicities of crystal nets. npj Comput. Mater., 6, 143(2020).
[43] H.Gao, C.Liu, R. J.Needs, C. J.Pickard, J.Sun, H.-T.Wang, Y.Wang, D.Xing. Multiple superionic states in helium–water compounds. Nat. Phys., 15, 1065-1070(2019).
[44] Q.Gu, J.Sun, D.Xing. Superconducting single-layer T-graphene and novel synthesis routes. Chin. Phys. Lett., 36, 097401(2019).
[45] H.Gao, A.Hermann, C.Liu, M.Miao, R. J.Needs, C. J.Pickard, J.Sun, H.-T.Wang, Y.Wang, D.Xing. Plastic and superionic helium ammonia compounds under high pressure and high temperature. Phys. Rev. X, 10, 021007(2020).
[46] H.Gao, A.Hermann, C.Liu, R. J.Needs, C. J.Pickard, J.Sun, H.-T.Wang, D.Xing. Coexistence of plastic and partially diffusive phases in a helium-methane compound. Natl. Sci. Rev., 7, 1540-1547(2020).
[47] H.Gao, Y.Han, C.Liu, X.Lu, J.Shi, J.Sun, H. T.Wang, J.Wang, D.Xing. Mixed coordination silica at megabar pressure. Phys. Rev. Lett., 126, 035701(2021).
[48] C.Ding, H.Gao, Y.Han, J.Sun, J.Wang, J.Yuan. High energy density polymeric nitrogen nanotubes inside carbon nanotubes. Chin. Phys. Lett., 39, 036101(2022).
[49] J.Furthmüller, G.Kresse. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 11169-11186(1996).
[50] P. E.Bl?chl. Projector augmented-wave method. Phys. Rev. B, 50, 17953-17979(1994).
[51] K.Burke, L. A.Constantin, G. I.Csonka, J. P.Perdew, A.Ruzsinszky, G. E.Scuseria, O. A.Vydrov, X.Zhou. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett., 100, 136406(2008).
[52] D.Joubert, G.Kresse. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758-1775(1999).
[53] J.Antony, S.Ehrlich, S.Grimme, H.Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 132, 154104(2010).
[54] S.Ehrlich, L.Goerigk, S.Grimme. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 32, 1456-1465(2011).
[55] I.Tanaka, A.Togo. First principles phonon calculations in materials science. Scr. Mater., 108, 1-5(2015).
[56] V. L.Deringer, R.Dronskowski, S.Maintz, A. L.Tchougréeff. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem., 34, 2557-2567(2013).
[57] V. L.Deringer, R.Dronskowski, S.Maintz, A. L.Tchougréeff. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem., 37, 1030-1035(2016).
[58] M. A.Blanco, V.Lua?a, A.Otero-de-la-Roza, A. M.Pendás. Critic: A new program for the topological analysis of solid-state electron densities. Comput. Phys. Commun., 180, 157-166(2009).
[59] E. R.Johnson, V.Lua?a, A.Otero-de-la-Roza. Critic2: A program for real-space analysis of quantum chemical interactions in solids. Comput. Phys. Commun., 185, 1007-1018(2014).
[60] F.Izumi, K.Momma. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr., 44, 1272-1276(2011).
[61] J. K.Burdett, Y.Jean, F.Volatron. An Introduction to Molecular Orbitals(1993).
[62] W. R. L.Lambrecht, S.Limpijumnong. Homogeneous strain deformation path for the wurtzite to rocksalt high-pressure phase transition in GaN. Phys. Rev. Lett., 86, 91-94(2001).
[63] F.Ali Sahraoui, N.Bouarissa, S.Zerroug. Ab initio calculations of yttrium nitride: Structural and electronic properties. Appl. Phys. A, 97, 345-350(2009).
[64] K.Bao, T.Cui, D.Duan, D.Li, B.Liu, Z.Liu, F.Tian, W.Wang, S.Wei, H.Yu. Bonding properties of aluminum nitride at high pressure. Inorg. Chem., 56, 7494-7500(2017).
[65] R. J.Needs, C. J.Pickard. High-pressure phases of nitrogen. Phys. Rev. Lett., 102, 125702(2009).
[66] E. J. M.Hensen, E. A.Pidko, R. Y.Rohling, I. C.Tranca. Correlations between density-based bond orders and orbital-based bond energies for chemical bonding analysis. J. Phys. Chem. C, 123, 2843-2854(2019).
[67] A. J.Cohen, J.Contreras-García, E. R.Johnson, S.Keinan, P.Mori-Sánchez, W.Yang. Revealing noncovalent interactions. J. Am. Chem. Soc., 132, 6498-6506(2010).
[68] A.Dalke, W.Humphrey, K.Schulten. VMD: Visual molecular dynamics. J. Mol. Graphics, 14, 33-38(1996).
[69] S. J.Jacobs, M. J.Kamlet. Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J. Chem. Phys., 48, 23-35(1968).
[70] X.Li, H.Niu, A. R.Oganov, J.Zhang. Pressure-stabilized hafnium nitrides and their properties. Phys. Rev. B, 95, 020103(2017).