[1] J. A.De Haseth, P. R.Griffiths. Fourier Transform Infrared Spectrometry(2006).
[2] Y.Ikemoto, T.Moriwaki, T.Nanba, H.Okamura. Infrared spectroscopy techniques for studying the electronic structures of materials under high pressure. Jpn. J. Appl. Phys., Part 1, 56, 05FA11(2017).
[3] R.Bini, G.Pratesi. High-pressure infrared study of solid methane: Phase diagram up to 30 GPa. Phys. Rev. B, 55, 14800-14809(1997).
[4] H.Berger, G. L.Carr, Z.Chen, W.Ku, Z.Liu, C.Ma, C.Martin, D. B.Tanner, X.Xi. Signatures of a pressure-induced topological quantum phase transition in BiTeI. Phys. Rev. Lett., 111, 155701(2013).
[5] P.Dumas, P.Loubeyre, F.Occelli, C.Pépin. Synthesis of lithium polyhydrides above 130 GPa at 300 K. Proc. Natl. Acad. Sci. U. S. A., 112, 7673-7676(2015).
[6] T. V.Brinzari, A. P.Litvinchuk, Z.Liu, J. L.Manson, J. L.Musfeldt, K. R.O’Neal, J. A.Schlueter. Local lattice distortions in Mn[N(CN)2]2 under pressure. Inorg. Chem., 55, 1956-1961(2016).
[7] Y.Bando, W.-Q.Han, Z.Liu, T.Sekiguchi, J.Wang, H.-G.Yu, C.Zhi. Isotope effect on band gap and radiative transitions properties of boron nitride nanotubes. Nano Lett., 8, 491-494(2008).
[8] Y.Cui, H. Y.Hwang, Y.Lin, Z.Liu, W. L.Mao, K. D.Patel, G. K.Solanki, S.Wang, G.Xu, H.Yuan, Q.Zeng, H.Zhang, Z.Zhao. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide. Nat. Commun., 6, 7312(2015).
[9] E.Greenberg, S.Huang, A.Lanzirotti, C.Ma, M.Newville, V. B.Prakapenka, G. R.Rossman, A. H.Shen, K.Tait, O.Tschauner, D.Zhang. Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth’s deep mantle. Science, 359, 1136-1139(2018).
[10] P.Dera, A. F.Goncharov, S. A.Gramsch, R. J.Hemley, P.Liermann, Z.Liu, H.-k.Mao, M.Somayazulu, W.Yang. Pressure-induced bonding and compound formation in xenon–hydrogen solids. Nat. Chem., 2, 50-53(2010).
[11] X.Chen, W.Dai, J.Gong, N.Kong, S.Ling, C.Peng, C.Su, F.Wan, P.Wu, Y.Yao, K.Zheng. A cuboid spider silk: Structure-function relationship and polypeptide signature. Macromol. Rapid Commun., 41, 1900583(2020).
[12] M. J.Buehler, Y.Fan, D. L.Kaplan, S.Ling, Y.Tang, C.Ye, W.Zhang, K.Zheng, J.Zhong. Tensan silk-inspired hierarchical fibers for smart textile applications. ACS Nano, 12, 6968-6977(2018).
[13] G. L.Carr, Z.Chen, X.Du, G. D.Gu, F.Guan, X.-G.He, X. G.Hong, W.Ku, T. S.Liu, Z.Liu, J. A.Schneeloch, X.Xi, R. D.Zhong. Bulk signatures of pressure-induced band inversion and topological phase transitions in Pb1−xSnxSe. Phys. Rev. Lett., 113, 096401(2014).
[14] M.Matsunami, T.Nanba, A.Ochiai, H.Okamura. Pressure tuning of an ionic insulator into a heavy electron metal: An infrared study of YbS. Phys. Rev. Lett., 103, 237202(2009).
[15] A.Dewaele, P.Dumas, P.Loubeyre, M.Mezouar. Oxygen impurities reduce the metallization pressure of xenon. Phys. Rev. B, 86, 014103(2012).
[16] A.Irizawa, G.Isoyama, K.Sato, K.Shimai, S.Suga. Direct observation of a pressure-induced metal-insulator transition in LiV2O4 by optical studies. Phys. Rev. B, 84, 235116(2011).
[17] M. J.Rice. Organic linear conductors as systems for the study of electron-phonon interactions in the organic solid state. Phys. Rev. Lett., 37, 36-39(1976).
[18] L.Benfatto, P.Blake, E.Cappelluti, I.Crassee, A. K.Geim, A. B.Kuzmenko, K. S.Novoselov, D.van der Marel. Gate tunable infrared phonon anomalies in bilayer graphene. Phys. Rev. Lett., 103, 116804(2009).
[19] M.Dressel, G.Grüner. Electrodynamics of Solids(2002).
[20] G.Burns. Solid State Physics(1985).
[21] M.Bishop, R.Chellappa, J.Coe, M.Pravica et al. 1,1-diamino-2,2-dinitroethylene under high-pressure-high-temperature. Bull. Am. Phys. Soc., 137, 174304(2012).
[22] M. L.Cowan, R. J.Dwayne Miller, T.Elsaesser, N.Huse, D.Kraemer, E. T. J.Nibbering, A.Paarmann. Temperature dependence of the two-dimensional infrared spectrum of liquid H2O. Proc. Natl. Acad. Sci. U. S. A., 105, 437-442(2008).
[23] M.Feng, Q.Xia, Y.Yang, P.Zhang. Temperature dependence of IR absorption of OH species in clinopyroxene. Am. Mineral., 95, 1439-1443(2010).
[24] D. N.Basov, B. C.Chapler, L.He, X.Kou, K. W.Post, K. L.Wang. Thickness-dependent bulk electronic properties in Bi2Se3 thin films revealed by infrared spectroscopy. Phys. Rev. B, 88, 075121(2013).
[25] G.Firanescu, D.Luckhaus, R.Signorell. Size effects in the infrared spectra of NH3 ice nanoparticles studied by a combined molecular dynamics and vibrational exciton approach. J. Chem. Phys., 125, 144501(2006).
[26] M. J.Bedzyk, Y.Chen, P.-H.Chien, D. M.DeLongchamp, A.Facchetti, Y.Gao, Y.-Y.Hu, W.Huang, T. J.Marks, K.McMillen, J. E.Medvedeva, S.Mukherjee, S.Patel, J.Tedesco, B.Wang, G.Wang, Y.Wang, L.Zeng. Experimental and theoretical evidence for hydrogen doping in polymer solution-processed indium gallium oxide. Proc. Natl. Acad. Sci. U. S. A., 117, 18231-18239(2020).
[27] O.Chubar, P.Dumas, J. L.Giorgetta, B.Lagarde, S.Lefrancois, F.Polack. Synchrotron infrared microscopy at the French Synchrotron Facility SOLEIL. Infrared Phys. Technol., 49, 152-160(2006).
[28] P.Lerch, E.Levenson, M. C.Martin. Spatial resolution limits for synchrotron-based spectromicroscopy in the mid- and near-infrared. J. Synchrotron Radiat., 15, 323-328(2008).
[29] P.Dumas, P.Lerch, M. C.Martin, U.Schade. Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy. Trends Anal. Chem., 29, 453-463(2010).
[30] M. A. G.Aranda, N.Benseny-Cases, A.Crisol, T.Ducic, P.Dumas, G.Ellis, S.Ferrer, G.García, M.Kreuzer, S.Lefran?ois, T.Moreno, J.Nicolas, M.Quispe, L.Ribó, I.?ics, I.Yousef. MIRAS: The infrared synchrotron radiation beamline at ALBA. Synchrotron Radiat. News, 30, 4-6(2017).
[31] M.Chen, T.Ji, W.Peng, Y.Tong, T.Xiao, H.Xu, Z.Zhang, H.Zhu. The status of the first infrared beamline at Shanghai Synchrotron Radiation Facility. Nucl. Instrum. Methods Phys. Res., Sect. A, 788, 116-121(2015).
[32] L.Kong, G.Liu, H.-k.Mao, W.Yang. Pressure engineering of photovoltaic perovskites. Mater. Today, 27, 91-106(2019).
[33] W. D.Duncan, G. P.Williams. Infrared synchrotron radiation from electron storage rings. Appl. Opt., 22, 2914-2923(1983).
[34] R. A.Bosch. Extraction of edge radiation within a straight section of Aladdin. Rev. Sci. Instrum., 73, 1423-1426(2002).
[35] P.Calvani, A.Gerschel, S.Lupi, Y.-L.Mathis, A.Nucara, P.Roy, B.Tremblay. Magnetic field discontinuity as a new brighter source of infrared synchrotron radiation. Phys. Rev. Lett., 80, 1220-1223(1998).
[36] P.Dumas, L. M.Miller, M. J.Tobin. Challenges in biology and medicine with synchrotron infrared light. Acta Phys. Pol., A, 115, 446-454(2009).
[37] R.Bhargava, G. L.Carr, O.Chubar, P.Dumas, and R.Bhargava, I. W.Levin. Spectrochemical Analysis Using Infrared Multichannel Detectors(2006).
[38] C.Hu, C.Li, Z.Qi, X.Wang. The new infrared beamline at NSRL. Infrared Phys. Technol., 105, 103200(2020).
[39] Bruker Corporation. Detector characterization using FTIR spectrometer. Application Note AN M161(2019).
[40] C. J.Hirschmugl, W. R.Mckinney, H. A.Padmore et al. First infrared beamline at the ALS: Design, construction, and initial commissioning. Proc. SPIE, 3153, 59-67(1997).
[41] H.Kimura, T.Moriwaki, S.Takahashi et al. Infrared beamline BL43IR at SPring-8: Design and commissioning. Nucl. Instrum. Methods Phys. Res., Sect. A, 467–468, 441-444(2001).
[42] K.Fukui, T.Ishikawa, H.Kimura, S.Kimura, Y.Kondo, T.Moriwaki, T.Nanba, T.Takahashi, Y.Yoshimatsu. Front end and optics of infrared beamline at SPring-8. Nucl. Instrum. Methods Phys. Res., Sect. A, 467–468, 437-440(2001).
[43] T.Hirono, Y.Ikemoto, H.Kimura, S.Kimura, K.Kobayashi, M.Matsunami, T.Moriwaki, N.Nagai, T.Nanba, K.Shinoda. Infrared microspectroscopy station at BL43IR of SPring-8. Infrared Phys. Technol., 45, 369-373(2004).
[44] O.Chubar, R.Pascale, Z. M.Qi, M.Rouzières. The AILES infrared beamline on the third generation Synchrotron Radiation Facility SOLEIL. Infrared Phys. Technol., 49, 139-146(2006).
[45] D.Creagh, P.Dumas, J.McKinlay. The design of the infrared beamline at the Australian synchrotron. Vib. Spectrosc., 41, 213-220(2006).
[46] J. W.Boldeman, D. D.Cohen, D. J.Paterson, C. G.Ryan. Microspectroscopy beamline at the Australian synchrotron. AIP Conf. Proc., 879, 864-867(2007).
[47] P.Calvani, M.Kiskinova, S.Lupi, A.Nucara, M.Ortolani, A.Perucchi, L.Quaroni. Performance of SISSI, the infrared beamline of the ELETTRA storage ring. J. Opt. Soc. Am. B, 24, 959-964(2007).
[48] T.Ellis, T.May, R.Reininger. Mid-infrared spectromicroscopy beamline at the Canadian Light Source. Nucl. Instrum. Methods Phys. Res., Sect. A, 582, 111-113(2007).
[49] P.Dumas, H.Hoorani, S.Lefran?ois, F.Makahleh, T.Moreno, A.Nadji, I.Yousef. Simulation and design of an infrared beamline for SESAME (synchrotron-light for experimental science and applications in the Middle East). Nucl. Instrum. Methods Phys. Res., Sect. A, 673, 73-81(2012).
[50] B.Chae, P.Dumas, H.-Y.Kim, S.Lefran?ois, C. K.Ryu, Y. D.Yun. 12D IRS: The infrared synchrotron radiation beamline at PAL. Synchrotron Radiat. News, 30, 6-8(2017).
[51] M.Chen, T.Ji, Y.Li, W.Peng, Y.Tong, T.Xiao, M.Zhang, Z.Zhang, H.Zhu. Performance of the infrared microspectroscopy station at SSRF. Infrared Phys. Technol., 67, 521-525(2014).
[52] M.Chen, T.Ji, Y. C.Lin, W. W.Peng, Y. Z.Tang, J. J.Zhong, X. J.Zhou, H. C.Zhu. New status of the infrared beamlines at SSRF. Nucl. Sci. Tech., 30, 182(2019).
[53] A. F.Goncharov, L.Kong, H. K.Mao. High-pressure integrated synchrotron infrared spectroscopy system at the Shanghai Synchrotron Radiation Facility. Rev. Sci. Instrum., 90, 093905(2019).
[54] S.Klotz, J.Loveday. High Pressure Physics(2012).
[55] Y.Haga, N.Tateiwa. Evaluations of pressure-transmitting media for cryogenic experiments with diamond anvil cell. Rev. Sci. Instrum., 80, 123901(2009).
[56] T.Hansen, S.Klotz, T.Str?ssle, K.Takemura. Freezing of glycerol-water mixtures under pressure. J. Phys.: Condens. Matter, 24, 325103(2012).
[57] D. L.Heinz, Z.Liu, C. T.Seagle, W.Zhang. Far-infrared dielectric and vibrational properties of nonstoichiometric wüstite at high pressure. Phys. Rev. B, 79, 014104(2009).
[58] H. B.Huntington, E.Wigner. On the possibility of a metallic modification of hydrogen. J. Chem. Phys., 3, 764-770(1935).
[59] N. W.Ashcroft, E.Babaev, A.Sudb?. A superconductor to superfluid phase transition in liquid metallic hydrogen. Nature, 431, 666-668(2004).
[60] S. A.Bonev, G.Galli, T.Ogitsu, E.Schwegler. A quantum fluid of metallic hydrogen suggested by first-principles calculations. Nature, 431, 669-672(2004).
[61] R. J.Hemley, H.-k.Mao. Ultrahigh-pressure transitions in solid hydrogen. Rev. Mod. Phys., 66, 671-692(1994).
[62] D. M.Ceperley, J. M.McMahon, M. A.Morales, C.Pierleoni. The properties of hydrogen and helium under extreme conditions. Rev. Mod. Phys., 84, 1607-1653(2012).
[63] X.-J.Chen, Y.Ding, B.Li, H.-K.Mao, L.Wang. Solids, liquids, and gases under high pressure. Rev. Mod. Phys., 90, 015007(2018).
[64] R.Letoullec, P.Loubeyre, J. P.Pinceaux. Properties of H2 under strong compression in a Ne matrix. Phys. Rev. Lett., 67, 3271-3274(1991).
[65] M.Hanfland, R. J.Hemley, H. K.Mao, G. P.Williams. Synchrotron infrared spectroscopy at megabar pressures-vibrational dynamics of hydrogen to 180 GPa. Phys. Rev. Lett., 69, 1129-1132(1992).
[66] J. H.Eggert, R. J.Hemley, H.-k.Mao. Observation of a two-vibron bound-to-unbound transition in solid deuterium at high pressure. Phys. Rev. Lett., 70, 2301-2304(1993).
[67] P. M.Bell, H. K.Mao, S. K.Sharma. Raman measurements of hydrogen in the pressure range 0.2-630 kbar at room temperature. Phys. Rev. Lett., 44, 886-888(1980).
[68] J. H.Eggert, A. F.Goncharov, R. J.Hemley, H.-k.Mao, I. I.Mazin. Raman excitations and orientational ordering in deuterium at high pressure. Phys. Rev. B, 54, R15590-R15593(1996).
[69] M.Ahart, R.Boehler, R. J.Hemley, Z.Liu, C.-s.Zha. High-pressure measurements of hydrogen phase IV using synchrotron infrared spectroscopy. Phys. Rev. Lett., 110, 217402(2013).
[70] R. J.Hemley, H.Liu, J. S.Tse, C.-s.Zha. Melting and high P–T transitions of hydrogen up to 300 GPa. Phys. Rev. Lett., 119, 075302(2017).
[71] N. H.March, R.Pucci, F.Siringo. Maximum in vibrational frequency shift of a hydrogen molecule in solid hydrogen under pressure. J. Phys. Chem. Solids, 47, 231-236(1986).
[72] I.Chuvashova, A. F.Goncharov, C.Ji, H.-k.Mao. Intermolecular coupling and fluxional behavior of hydrogen in phase IV. Proc. Natl. Acad. Sci. U. S. A., 116, 25512-25515(2019).
[73] P.Dumas, P.Loubeyre, F.Occelli. Hydrogen phase IV revisited via synchrotron infrared measurements in H2 and D2 up to 290 GPa at 296 K. Phys. Rev. B, 87, 134101(2013).
[74] A. P.Drozdov, M. I.Eremets, P. P.Kong, H.Wang. Semimetallic molecular hydrogen at pressure above 350 GPa. Nat. Phys., 15, 1246-1249(2019).
[75] N. H.Chen, I. F.Silvera, E.Sterer. Extended infrared studies of high pressure hydrogen. Phys. Rev. Lett., 76, 1663-1666(1996).
[76] R. J.Hemley, Z.Liu, C.-S.Zha. Synchrotron infrared measurements of dense hydrogen to 360 GPa. Phys. Rev. Lett., 108, 146402(2012).
[77] P.Dumas, P.Loubeyre, F.Occelli. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature, 577, 631-635(2020).
[78] A. F.Goncharov, E.Gregoryanz, R. J.Hemley, H.-k.Mao, G.Shen, M.Somayazulu. Raman, infrared, and x-ray evidence for new phases of nitrogen at high pressures and temperatures. Phys. Rev. B, 66, 224108(2002).
[79] R.Bini, H. J.Jodl, J.Kreutz, L.Ulivi. High-pressure phases of solid nitrogen by Raman and infrared spectroscopy. J. Chem. Phys., 112, 8522-8529(2000).
[80] A. F.Goncharov, E.Gregoryanz, R. J.Hemley, Z.Liu, H.-k.Mao. Optical evidence for a nonmolecular phase of nitrogen above 150 GPa. Phys. Rev. Lett., 85, 1262-1265(2000).
[81] A. P.Drozdov, M. I.Eremets, V.Ksenofontov, S. I.Shylin, I. A.Troyan. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 525, 73-76(2015).
[82] F. F.Balakirev, L.Balicas, S. P.Besedin, A. P.Drozdov, M. I.Eremets, D. E.Graf, E.Greenberg, D. A.Knyazev, P. P.Kong, M. A.Kuzovnikov, V. S.Minkov, S.Mozaffari, V. B.Prakapenka, M.Tkacz. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 569, 528-531(2019).
[83] N.Dasenbrock-Gammon, M.Debessai, R. P.Dias, K. V.Lawler, R.McBride, A.Salamat, E.Snider, K.Vencatasamy, H.Vindana. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature, 586, 373-377(2020).
[84] T.Cui, D.Duan, X.Huang, D.Li, B.Liu, Y.Liu, F.Tian, W.Tian, H.Yu, Z.Zhao. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep., 4, 6968(2015).
[85] M.Calandra, I.Errea, Y.Li, H.Liu, Y.Ma, F.Mauri, R. J.Needs, J.Nelson, C. J.Pickard, Y.Zhang. High-pressure hydrogen sulfide from first principles: A strongly anharmonic phonon-mediated superconductor. Phys. Rev. Lett., 114, 157004(2015).
[86] N.Bernstein, C. S.Hellberg, M. D.Johannes, I. I.Mazin, M. J.Mehl. What superconducts in sulfur hydrides under pressure and why. Phys. Rev. B, 91, 060511(2015).
[87] B. M.Klein, M. J.Mehl, D. A.Papaconstantopoulos, W. E.Pickett. Cubic H3S around 200 GPa: An atomic hydrogen superconductor stabilized by sulfur. Phys. Rev. B, 91, 184511(2015).
[88] J. A.Flores-Livas, E. K. U.Gross, A.Sanna. High temperature superconductivity in sulfur and selenium hydrides at high pressure. Eur. Phys. J. B, 89, 63(2016).
[89] J.-B.Brubach, F.Capitani, J. P.Carbotte, A.Drozdov, M. I.Eremets, B.Langerome, E. J.Nicol, P.Roy, T.Timusk. Spectroscopic evidence of a new energy scale for superconductivity in H3S. Nat. Phys., 13, 859-863(2017).
[90] S. L.James. Metal-organic frameworks. Chem. Soc. Rev., 32, 276-288(2003).
[91] K. E.Cordova, H.Furukawa, M.O’Keeffe, O. M.Yaghi. The chemistry and applications of metal-organic frameworks. Science, 341, 1230444(2013).
[92] O. K.Farha, J. T.Hupp, J.Lee, S. T.Nguyen, J.Roberts, K. A.Scheidt. Metal–organic framework materials as catalysts. Chem. Soc. Rev., 38, 1450-1459(2009).
[93] M.Allendorf, O. K.Farha, J. T.Hupp, L. E.Kreno, K.Leong, R. P.Van Duyne. Metal–organic framework materials as chemical sensors. Chem. Rev., 112, 1105-1125(2012).
[94] B.Chen, Y.Cui, G.Qian, Y.Yue. Luminescent functional metal–organic frameworks. Chem. Rev., 112, 1126-1162(2012).
[95] R. J.Kuppler, J.-R.Li, H.-C.Zhou. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev., 38, 1477-1504(2009).
[96] Y.-B.Zhang, L.Zhu. Crystallization of covalent organic frameworks for gas storage applications. Molecules, 22, 1149(2017).
[97] J.?ejka. Metal-organic frameworks: Applications from catalysis to gas storage. Edited by David Farrusseng. Angew. Chem., 51, 4782-4783(2012).
[98] Y.Hu, Y.Huang, Z.Liu, Y.Song, J.Xu. Evidence of pressure enhanced CO2 storage in ZIF-8 probed by FTIR spectroscopy. J. Am. Chem. Soc., 135, 9287-9290(2013).
[99] G.Blanita, F.Borondics, F.Capitani, A.Celeste, O.Grad, J.-P.Itié, B.Joseph, A.Paolone, C.Zlotea. Mesoporous metal–organic framework MIL-101 at high pressure. J. Am. Chem. Soc., 142, 15012-15019(2020).
[100] H. J.Snaith, S. D.Stranks. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol., 10, 391-402(2015).
[101] N.Ashari-Astani, A.Boziki, C.Gr?tzel, M.Gr?tzel, J.Luo, S.Meloni, U.R?thlisberger, C.Yi, S. M.Zakeeruddin. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci., 9, 656-662(2016).
[102] G. E.Eperon, M. R.Filip, F.Giustino, H. J.Snaith. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun., 5, 5757(2014).
[103] G. E.Eperon, H. J.Snaith, W.Zhang. Metal halide perovskites for energy applications. Nat. Energy, 1, 16048(2016).
[104] J.Gong, Q.Hu, L.Kong, G.Liu, Z.Liu, H. K.Mao, R. D.Schaller, T.Xu, W.Yang, D.Zhang. Pressure-induced bandgap optimization in lead-based perovskites with prolonged carrier lifetime and ambient retainability. Adv. Funct. Mater., 27, 1604208(2017).
[105] Z.Cai, D. J.Gosztola, P.Guo, Q.Hu, M. G.Kanatzidis, L.Kong, G.Liu, Z.Liu, H.-k.Mao, R. D.Schaller, C. C.Stoumpos. Two regimes of bandgap red shift and partial ambient retention in pressure-treated two-dimensional perovskites. ACS Energy Lett., 2, 2518-2524(2017).
[106] J.Gong, Q.Hu, M. G.Kanatzidis, L.Kong, G.Liu, Z.Liu, H.-k.Mao, R. D.Schaller, C. C.Stoumpos, T.Xu, S.Yan, W.Yang. Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing. Proc. Natl. Acad. Sci. U. S. A., 115, 8076-8081(2018).
[107] M.Chen, J.Gong, Q.Hu, M. G.Kanatzidis, L.Kong, G.Liu, X.Lü, H.-k.Mao, L.Mao, W.Yang. Highly tunable properties in pressure-treated two-dimensional Dion–Jacobson perovskites. Proc. Natl. Acad. Sci. U. S. A., 117, 16121-16126(2020).
[108] P.Dera, J.Gong, Q.Hu, L.Kong, G.Liu, Z.Liu, H.-k.Mao, R. D.Schaller, Y.Tang, C.Wang, S.-H.Wei, T.Xu, W.Yang, D.Zhang, K.Zhu. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic–inorganic trihalide perovskites. Proc. Natl. Acad. Sci. U. S. A., 113, 8910-8915(2016).
[109] A.Jaffe, H. I.Karunadasa, Y.Lin, W. L.Mao. Pressure-induced metallization of the halide perovskite (CH3NH3)PbI3. J. Am. Chem. Soc., 139, 4330-4333(2017).
[110] F.Capitani, A.Celeste, J.Gong, T.Hattori, Q.Hu, L.Kong, N.Li, G.Liu, H. k.Mao, A.Sano‐Furukawa, W.Yang. Suppressed lattice disorder for large emission enhancement and structural robustness in hybrid lead iodide perovskite discovered by high-pressure isotope effect. Adv. Funct. Mater., 31, 2009131(2021).
[111] A.Kavner. Elasticity and strength of hydrous ringwoodite at high pressure. Earth Planet. Sci. Lett., 214, 645-654(2003).
[112] C.Dupas-Bruzek, S.-i.Karato, D. C.Rubie. Plastic deformation of silicate spinel under the transition-zone conditions of the Earth’s mantle. Nature, 395, 266-269(1998).
[113] D. L.Kohlstedt, S.Mei. Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J. Geophys. Res., 105, 21471-21481(2000).
[114] H. P.Scott, Q.Williams. An infrared spectroscopic study of lawsonite to 20 GPa. Phys. Chem. Miner., 26, 437-445(1999).
[115] R. J.Angel, T. B.Ballaran. Equation of state and high-pressure phase transitions in lawsonite. Eur. J. Mineral., 15, 241-246(2003).
[116] D. R.Allan, A. R.Pawley. A high-pressure structural study of lawsonite using angle-dispersive powder-diffraction methods with synchrotron radiation. Mineral. Mag., 65, 41-58(2001).
[117] T. W.Becker, K. G.Dueker, S. D.Jacobsen, Z.Liu, B.Schmandt. Dehydration melting at the top of the lower mantle. Science, 344, 1265-1268(2014).
[118] Y. W.Fei, A. M.Hofmeister, Z. X.Liu, M. K.Müller. High-pressure IR-spectra and the thermodynamic properties of chloritoid. Am. Mineral., 87, 609-622(2002).
[119] E.Arcangeletti, L.Baldassarre, D.Di Castro, S.Lupi, D.Nicoletti, A.Perucchi, P.Postorino, V. A.Sidorov. Electrodynamics near the metal-to-insulator transition in V3O5. Phys. Rev. B, 75, 245108(2007).