Optoelectronics Letters, Volume. 20, Issue 4, 234(2024)

Improved remote sensing image target detection based on YOLOv7

Shuanglong XU... Zhihong CHEN*, Haiwei ZHANG, Lifang XUE and Huijun SU |Show fewer author(s)
Author Affiliations
  • School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
  • show less

    Remote sensing images are taken at high altitude from above, with complex spatial scenes of images and a large number of target types. The detection of image targets on large scale remote sensing images suffers from the problem of small target size and target density. This paper proposes an improved model for remote sensing image detection based on you only look once version 7 (YOLOv7). First, the small-scale detection layer is added to reacquire tracking frames to improve the network's recognition ability of small-scale targets, and then Bottleneck Transformers are fused in the backbone to make full use of the convolutional neural network (CNN)+Transformer architecture to enhance the feature extraction ability of the network. After that, the convolutional block attention module (CBAM) mechanism is added in the head to improve the model's ability of small-scale target. Finally, the non-maximum suppressed (NMS) of YOLOv7 algorithm is changed to distance intersection over union-non maximum suppression (DIOU-NMS) to improve the detection ability of overlapping targets in the network. The results show that the method in this paper can improve the detection rate of small-scale targets in remote sensing images and effectively solve the problem of high overlap and is tested on the NWPU-VHR10 and DOTA1.0 datasets, and the accuracy of the improved model is improved by 6.3% and 4.2%, respectively, compared with the standard YOLOv7 algorithm.

    Tools

    Get Citation

    Copy Citation Text

    XU Shuanglong, CHEN Zhihong, ZHANG Haiwei, XUE Lifang, SU Huijun. Improved remote sensing image target detection based on YOLOv7[J]. Optoelectronics Letters, 2024, 20(4): 234

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Apr. 8, 2023

    Accepted: Sep. 21, 2023

    Published Online: Aug. 9, 2024

    The Author Email: Zhihong CHEN (zhchen@email.tjut.edu.cn)

    DOI:10.1007/s11801-024-3063-z

    Topics