Acta Optica Sinica, Volume. 31, Issue 7, 714002(2011)

Dislocation Configurations Induced by Laser Shock Processing of 2A02 Aluminum Alloy

Luo Xinmin1、*, Zhang Jingwen1, Ma Hui1, Zhang Yongkang2, Chen Kangmin1,3, Ren Xudong2, and Luo Kaiyu2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less

    Aluminum alloy 2A02 is shocked by using the NdYAG laser with 1064 nm output wavelength and 20 ns pulse width. The surface hardness and residual stress of sample are measured, and the sub-structure of grain and its evolution behavior induced by laser shock are analyzed via the inverse fast Fourier transform (IFFT) method. The experimental results indicate that the surface hardness of the laser-shocked material increases by 50%, and the residual compressive stress of the laser-shocked test material reaches above 120 MPa. The transmission electron microscopy (TEM) and IFFT analysis of microstructure demonstrate that there are different types of dislocation configurations in the laser shocked area, mainly including edge dislocations and central dislocation bands; and the dislocation walls refine the original grain. The dislocation dipole close-array becomes the characteristic element of the nanocrystalline under the non-equilibrium deformation condition endowed by laser shock. Therefore, the complex dislocation configurations and the crystal lattice distortion induced by laser shocking are important to the improvement of surface hardness and residual stress.

    Tools

    Get Citation

    Copy Citation Text

    Luo Xinmin, Zhang Jingwen, Ma Hui, Zhang Yongkang, Chen Kangmin, Ren Xudong, Luo Kaiyu. Dislocation Configurations Induced by Laser Shock Processing of 2A02 Aluminum Alloy[J]. Acta Optica Sinica, 2011, 31(7): 714002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Mar. 1, 2011

    Accepted: --

    Published Online: Jun. 18, 2020

    The Author Email: Xinmin Luo (luoxm@ujs.edu.cn)

    DOI:10.3788/aos201131.0714002

    Topics