Journal of Inorganic Materials, Volume. 37, Issue 9, 1030(2022)

Enhanced Lithium Storage Stability Mechanism of Ultra-high Nickel LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2 Cathode Materials

Hezhen ZHU1... Xuanpeng WANG2,3,*, Kang HAN1, Chen YANG1, Ruizhe WAN2, Liming WU1, and Liqiang MAI13,* |Show fewer author(s)
Author Affiliations
  • 11. School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
  • 22. School of Science, Wuhan University of Technology, Wuhan 430070, China
  • 33. Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528200, China
  • show less

    Ultra-high nickel material as a new lithium-ion battery cathode has attracted much attention due to its high specific capacity, high voltage and low cost. However, the generated microcracks, mechanical pulverization and irreversible phase transformation during cycling, result in poor cycling stability. Herein, a series of Ca3(PO4)2- coated ultra-high nickel LiNi0.91Co0.06Al0.03O2 materials with different thicknesses (NCA@nCP) were prepared through a facile wet-chemistry strategy. Among them, NCA@1CP manifested specific discharge capacity of 204.8 mAh/g under 2.7-4.3 V at 1C (1C=200 mA/g), with a capacity retention rate of 91.5% after 100 cycles. Even after 300 cycles at 2C, the specific discharge capacity retained 153.4 mAh/g. Material characterization results further confirm that the coating shell inhibits the Li/Ni mixing, irreversible phase transformation and mechanical pulverization of the NCA@1CP, greatly improving the cycling stability. This work shows that the Ca3(PO4)2 coating strategy has great application potential in improving the lithium storage stability of ultra-high nickel cathode materials.

    Tools

    Get Citation

    Copy Citation Text

    Hezhen ZHU, Xuanpeng WANG, Kang HAN, Chen YANG, Ruizhe WAN, Liming WU, Liqiang MAI. Enhanced Lithium Storage Stability Mechanism of Ultra-high Nickel LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2 Cathode Materials [J]. Journal of Inorganic Materials, 2022, 37(9): 1030

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH ARTICLE

    Received: Dec. 17, 2021

    Accepted: --

    Published Online: Jan. 12, 2023

    The Author Email: WANG Xuanpeng (wxp122525691@whut.edu.cn), MAI Liqiang (mlq518@whut.edu.cn)

    DOI:10.15541/jim20210769

    Topics