Optics and Precision Engineering, Volume. 26, Issue 8, 1855(2018)
Compact mid-infrared trace gas detection system based on TDLAS and ICL
Two compact Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensor systems were developed based on different structural optical cores. The two optical cores combine two recent developments; gallium antimonide (GaSb)-based ICL and a compact multipass gas cell (MPC), with the aim of developing a compact TDLAS-based sensor for mid-IR gas detection with high detection sensitivity and low power consumption. The two-floor structure sensor was used for methane (CH4) measurements and the single-floor structure sensor was used for formaldehyde (CH2O) concentration measurements, with the two optical sensor cores consuming 3.7 W of power. Detection limits of ~5 nL/L and ~3 nL/L with measurement precisions of ~1.4 nL/L and ~1 nL/L were achieved for CH4 and CH2O concentration measurements, respectively. In addition, the two-structure system was used for CH4 and C2H6 detection under the same conditions over a period of 66 h campus. The results show that the sensors worked steadily and effectively. They can satisfy the system requirements of non-contact, online, real-time, high-precision, and rapid signal acquisition, as well as strong anti-jamming and high stability.
Get Citation
Copy Citation Text
LI Chun-guang, DONG Lei, WANG Yi-ding, LIN Jun. Compact mid-infrared trace gas detection system based on TDLAS and ICL[J]. Optics and Precision Engineering, 2018, 26(8): 1855
Category:
Received: Apr. 23, 2018
Accepted: --
Published Online: Oct. 2, 2018
The Author Email: Chun-guang LI (lcg0213@126.com)