[1] N. E.Andreev, C.Arda, S.H?fer, A.Hoffmann, M. C.Kaluza, D.Kartashov, D.Khaghani, R.Loetzsch, M. E.Povarnitsyn, L. P.Pugachev, O. N.Rosmej, A.Saevert, Z.Samsonova, A.Schoenlein, C.Spielmann, I.Uschmann, S.Z?hter. Generation of keV hot near-solid density plasma states at high contrast laser-matter interaction. Phys. Plasmas, 25, 083103(2018).
[2] V. Y.Bychenkov, K.Flippo, A.Maksimchuk, K.Mima, G.Mourou, Y.Sentoku, Z. M.Sheng, D.Umstadter. High-energy ion generation in interaction of short laser pulse with high-density plasma. Appl. Phys. B: Lasers Opt., 74, 207(2002).
[3] K.Gopal, D. N.Gupta, S.Kumar. Proton acceleration from overdense plasma target interacting with shaped laser pulses in the presence of preplasmas. Plasma Phys. Controlled Fusion, 61, 085001(2019).
[4] A.Anzalone, F.Baffigi, G.Bussolino, G.Cristoforetti, G.D’Arrigo, L.Fulgentini, A.Giulietti, L. A.Gizzi, P.Koester, L.Labate, S.Tudisco. Investigation on laser–plasma coupling in intense, ultrashort irradiation of a nanostructured silicon target. Plasma Phys. Controlled Fusion, 56, 095001(2014).
[5] M. A.Alkhimova, E. J.Ditter, N. P.Dover, O. C.Ettlinger, A. Ya.Faenov, M.Hata, G. S.Hicks, N.Iwata, M.Kando, H.Kiriyama, J. K.Koga, K.Kondo, Ko.Kondo, H. F.Lowe, T.Miyahara, Z.Najmudin, M.Nishiuchi, T. A.Pikuz, A. S.Pirozhkov, A.Sagisaka, H.Sakaki, U.Schramm, Y.Sentoku, Y.Watanabe, K.Zeil, T.Ziegler. Dynamics of laser-driven heavy-ion acceleration clarified by ion charge states. Phys. Rev. Res., 2, 033081(2020).
[6] F.Baffigi, F.Brandi, G.Cristoforetti, G.D’Arrigo, A.Fazzi, L.Fulgentini, D.Giove, L. A.Gizzi, P.Koester, L.Labate, G.Maero, D.Palla, M.Romé, R.Russo, D.Terzani, P.Tomassini. Laser-driven proton acceleration via excitation of surface plasmon polaritons into TiO2 nanotube array targets. Plasma Phys. Controlled Fusion, 62, 114001(2020).
[7] C.Bargsten, R.Hollinger, B. M.Luther, A.Prieto, A.Pukhov, M. A.Purvis, J. J.Rocca, V. N.Shlyaptsev, S.Wang, Y.Wang, L.Yin. Relativistic plasma nanophotonics for ultrahigh energy density physics. Nat. Photonics, 7, 796(2013).
[8] C.Bargsten, M.Busquet, M. G.Capeluto, R.Hollinger, V.Kaymak, D.Keiss, M.Klapisch, R.London, J.Park, A.Pukhov, J. J.Rocca, A.Rockwood, V. N.Shlyaptsev, R.Tommasini, S.Wang, Y.Wang. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures. Sci. Adv., 3, e1601558(2017).
[9] C.Bargsten, M. G.Capeluto, A.Curtis, R.Hollinger, V.Kaymak, A.Prieto, A.Pukhov, J. J.Rocca, A.Rockwood, V. N.Shlyaptsev, P.Stockton, A.Townsend, S.Wang, Y.Wang. Efficient picosecond x-ray pulse generation from plasmas in the radiation dominated regime. Optica, 4, 1344(2017).
[10] F.Baffigi, A.Bigongiari, M.Bougeard, T.Ceccotti, P.D’Oliveira, V.Floquet, J.Fuchs, L. A.Gizzi, A.Heron, O.Klimo, M.Květon, L.Labate, A.Macchi, P.Martin, F.Novotny, M.Passoni, M.Possolt, J.Prok?pek, J.Pro?ka, J.P?ikal, M.Raynaud, F.Réau, C.Riconda, A.Sgattoni, L.?tolcoá, O.Tcherbakoff, L.Vassura, A.Velyhan. Evidence of resonant surface-wave excitation in the relativistic regime through measurements of proton acceleration from grating targets. Phys. Rev. Lett., 111, 185001(2013).
[11] F.Baffigi, F.Brandi, G.Cristoforetti, G.D’Arrigo, A.Fazzi, L.Fulgentini, D.Giove, L. A.Gizzi, P.Koester, L.Labate, G.Maero, D.Palla, M.Romé, R.Russo, D.Terzani, P.Tomassini. Intense proton acceleration in ultrarelativistic interaction with nanochannels. Phys. Rev. Res., 2, 033451(2020).
[12] A.Macchi. Surface plasmons in superintense laser-solid interactions. Phys. Plasmas, 25, 031906(2018).
[13] Y.Gu, Y.Ji, G.Jiang, Y.Tang, C.Wang, W.Wu. Efficient generation and transportation of energetic electrons in a carbon nanotube array target. Appl. Phys. Lett., 96, 041504(2010).
[14] E.Chowdhury, G. E.Cochran, R. L.Daskalova, K. M.George, A.Handler, L. L.Ji, D.Nasir, P. L.Poole, T.Rubin, D. W.Schumacher, B. F.Shen, J.Snyder, C.Willis, A.Zingale. Relativistic laser driven electron accelerator using micro-channel plasma targets. Phys. Plasmas, 26, 033110(2019).
[15] C.Calvi, M. G.Capeluto, A.Curtis, R.Hollinger, S.Kasdorf, V.Kaymak, A.Moreau, A.Pukhov, J. J.Rocca, A.Rockwood, V. N.Shlyaptsev, S.Wang, Y.Wang. Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities. Plasma Phys. Controlled Fusion, 62, 014013(2020).
[16] Z. Y.Chen, Z. G.Deng, X. R.Jiang, S. C.Ruan, F. Q.Shao, Y.Yin, D. Y.Yu, M. Y.Yu, T. P.Yu, C. T.Zhou, H. B.Zhuo, D. B.Zou. Enhancement of target normal sheath acceleration in laser multi-channel target interaction. Phys. Plasmas, 26, 123105(2019).
[17] A.Adak, F.Baffigi, G.Chatterjee, G.Cristoforetti, G.D’Arrigo, L. A.Gizzi, J.Jha, M.Krishnamurthy, G. R.Kumar, A. D.Lad, P.Londrillo, R. G.Milazzo, D.Sarkar, M.Shaikh, P. K.Singh. Transition from Coherent to Stochastic electron heating in ultrashort relativistic laser interaction with structured targets. Sci. Rep., 7, 1479(2017).
[18] H.Daido, M.Nishiuchi, A. S.Pirozhkov. Review of laser-driven ion sources and their applications. Rep. Prog. Phys., 75, 056401(2012).
[19] A.Brantov, V. Yu.Bychenkov, E.d’Humieres, V. T.Tikhonchuk. Optimization of laser-target interaction for proton acceleration. Phys. Plasmas, 20, 023103(2013).
[20] M. A.Alkhimova, N. P.Dover, A. Ya.Faenov, M.Hata, N.Iwata, M.Kando, H.Kiriyama, J. K.Koga, K.Kondo, Ko.Kondo, T.Miyahara, M.Nishiuchi, T. A.Pikuz, A. S.Pirozhkov, A.Sagisaka, H.Sakaki, Y.Sentoku, Y.Watanabe. Effect of small focus on electron heating and proton acceleration in ultrarelativistic laser-solid interactions. Phys. Rev. Lett., 124, 084802(2020).
[21] C.Altana, F.Brandi, P.Cirrone, G.Cristoforetti, D.Giove, L. A.Gizzi et al. A new line for laser-driven light ions acceleration and related TNSA studies. Appl. Sci., 7, 984(2017).
[22] F.Baffigi, F.Brandi, G.Bussolino, G.Cristoforetti, A.Fazzi, L.Fulgentini, D.Giove, L. A.Gizzi, P.Koester, L.Labate, G.Maero, D.Palla, M.Romé, P.Tomassini. Light ion accelerating line (L3IA): Test experiment at ILIL-PW. Nucl. Instrum. Methods Phys. Res., Sect. A, 909, 160(2018).
[23] Y. F.Nicolau. Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process. Appl. Surf. Sci., 22-23, 1061(1985).
[24] A. E.Jimenez-Gonzailez, P. K.Nair. Photosensitive ZnO thin films prepared by the chemical deposition method SILAR. Semicond. Sci. Technol., 10, 1277(1995).
[25] F.Bissoli, D.Calestani, E.Gilioli, F.Pattini, M.Villani, A.Zappettini. Solution-free and catalyst-free synthesis of ZnO-based nanostructured TCOs by PED and vapor phase growth techniques. Nanotechnology, 23, 194008(2012).
[26] D.Calestani, L.Lazzarini, M.Mazzera, R.Mosca, L.Zanotti, A.Zappettini, M.Zha. Large-area self-catalysed and selective growth of ZnO nanowires. Nanotechnology, 19, 325603(2008).
[27] D.Calestani, M.Culiolo, D.Delmonte, S.-W.Kim, T.-Y.Kim, L.Marchini, M.Solzi, M.Villani, A.Zappettini. Functionalization of carbon fiber tows with ZnO nanorods for stress sensor integration in smart composite materials. Nanotechnology, 29, 335501(2018).
[28] R.Bercella, D.Calestani, N.Coppedè, M.Culiolo, D.Delmonte, L.Marchini, M.Solzi, M.Villani, A.Zappettini. Turning carbon fiber into a stress-sensitive composite material. J. Mater. Chem. A, 4, 10486(2016).
[29] E.Appert, O.Chaix-Pluchery, V.Consonni, J. D.Garnier, R.Parize. Effects of polyethylenimine and its molecular weight on the chemical bath deposition of ZnO nanowires. ACS Omega, 3, 12457(2018).
[30] C.Benedetti, P.Londrillo, A.Sgattoni, G.Turchetti. ALaDyn: A high-accuracy PIC code for the Maxwell–Vlasov equations. IEEE Trans. Plasma Sci., 36, 1790(2008).
[31] A.Adak, G.Chatterjee, G.Cristoforetti, G.D’Arrigo, L. A.Gizzi, J.Jha, M.Krishnamurthy, A. D.Lad, P.Londrillo, G.Ravindra Kumar, D.Sarkar, M.Shaikh, P. K.Singh. Silicon nanowire based high brightness, pulse relativistic electron source. APL Photonics, 2, 066105(2017).