Electronics Optics & Control, Volume. 25, Issue 6, 83(2018)
An Algorithm for Recognition of Airport in Remote Sensing Image Based on DCNN Model
In order to solve the problems of low locating precision and low recognition rate of the airport identification algorithm in sub-meter high-resolution remote sensing imagesa new identification algorithm based on Deep Convolutional Neural Network (DCNN) is proposed.Firstlythe bi-cubic interpolation algorithm is used to down-sample the original single-phase remote sensing images and convert them into grayscale imagesand the pre-processed images are obtained by fuzzy enhancement.Secondlythe edge information of the images is detected by using Canny edge detection operatorand the straight line segments are extracted by using probability Hough transform.The linear regions are preliminarily screened and merged by judging whether there are parallel lines.ThenDCNN is used for judging the merged regions to acquire the recognition probability of the corresponding regions.Finallythe airport area is obtained by analyzing the probability values of the candidate regions.Simulation experiments were made to the two kinds of remote sensing images with high resolutionthe recognition rate was 100% and the mean locating accuracy was 87.53%which proved the validity and versatility of the proposed algorithm.
Get Citation
Copy Citation Text
ZHANG Zuo-xing, YANG Cheng-liang, ZHU Rui-fei, GAO Fang, YU Ye, ZHONG Xing. An Algorithm for Recognition of Airport in Remote Sensing Image Based on DCNN Model[J]. Electronics Optics & Control, 2018, 25(6): 83
Category:
Received: Jul. 24, 2017
Accepted: --
Published Online: Aug. 21, 2018
The Author Email: