[1] W. L.Kruer. The Physics of Laser Plasma Interactions(1988).
[2] C. S.Liu. High-Power Laser-Plasma Interaction(2019).
[3] T. R.Boehly, D. L.Brown, R. S.Craxton, R. L.Keck, J. H.Kelly, T. J.Kessler, J. P.Knauer, S. A.Kumpan, S. A.Letzring, S. J.Loucks, F. J.Marshall, R. L.McCrory, S. F. B.Morse, W.Seka, J. M.Soures, C. P.Verdon. Initial performance results of the OMEGA laser system. Opt. Commun., 133, 495(1997).
[4] J. M.Auerbach, M. W.Bowers, S. N.Dixit, G. V.Erbert, C. A.Haynam, G. M.Heestand, M. A.Henesian, M. R.Hermann, K. S.Jancaitis, K. R.Manes, C. D.Marshall, N. C.Mehta, J.Menapace, E.Moses, J. R.Murray, M. C.Nostrand, C. D.Orth, R.Patterson, R. A.Sacks, M. J.Shaw, M.Spaeth, S. B.Sutton, B. M.Van Wonterghem, P. J.Wegner, R. K.White, C. C.Widmayer, W. H.Williams, S. T.Yang. National Ignition Facility laser performance status. Appl. Opt., 46, 3276(2007).
[5] K. S.Anderson, R.Betti, T. R.Boehly, T. J. B.Collins, R. S.Craxton, J. A.Delettrez, V. N.Goncharov, D. R.Harding, S. X.Hu, J. P.Knauer, W. L.Kruer, J. A.Marozas, A. V.Maximov, R. L.McCrory, P. W.McKenty, D. D.Meyerhofer, D. T.Michel, J. F.Myatt, P. B.Radha, S. P.Regan, T. C.Sangster, A. J.Schmitt, W.Seka, J. D.Sethian, R. W.Short, S.Skupsky, A. A.Solodov, J. M.Soures, C.Stoeckl, K.Tanaka, W.Theobald, J. D.Zuegel. Direct-drive inertial confinement fusion: A review. Phys. Plasmas, 22, 110501(2015).
[6] D. S.Montgomery. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion. Phys. Plasmas, 23, 055601(2016).
[7] P.Amendt, R. L.Berger, S. G.Glendinning, S. H.Glenzer, S. W.Haan, R. L.Kauffman, O. L.Landen, J. D.Lindl, L. J.Suter. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 11, 339(2004).
[8] R.Betti, O. A.Hurricane. Inertial-confinement fusion with lasers. Nat. Phys., 12, 435(2016).
[9] R. E.Chrien, J. A.Cobble, D. F.DuBois, B. H.Failor, J. C.Fernández, D. S.Montgomery, H. A.Rose, H. X.Vu, B. H.Wilde, M. D.Wilke. Observed dependence of stimulated Raman scattering on ion-acoustic damping in hohlraum plasmas. Phys. Rev. Lett., 77, 2702(1996).
[10] R. L.Berger, L.Berzak Hopkins, E. L.Dewald, L.Divol, M.Hohenberger, O. S.Jones, W. L.Kruer, P.Michel, J. L.Milovich, J. D.Moody. Multibeam stimulated Raman scattering in inertial confinement fusion conditions. Phys. Rev. Lett., 115, 055003(2015).
[11] R. L.Berger, L.Divol, D. H.Froula, S. H.Glenzer, R. A.London, B. J.MacGowan, N. B.Meezan, P.Neumayer, J. S.Ross, C.Sorce, L. J.Suter. Suppression of stimulated Brillouin scattering by increased Landau damping in multiple-ion-species hohlraum plasmas. Phys. Rev. Lett., 100, 105001(2008).
[12] B. B.Afeyan, R. K.Kirkwood, W. L.Kruer, S. C.Wilks. Energy transfer between crossing laser beams. Phys. Plasmas, 3, 382(1996).
[13] L. J.Atherton, R. L.Berger, E.Bond, D. K.Bradley, D. A.Callahan, E. L.Dewald, L.Divol, S.Dixit, M. J.Edwards, S.Glenn, S. H.Glenzer, A.Hamza, C.Haynam, D. E.Hinkel, N.Izumi, O.Jones, J. D.Kilkenny, R. K.Kirkwood, J. L.Kline, W. L.Kruer, G. A.Kyrala, O. L.Landen, S.LePape, J. D.Lindl, B. J.MacGowan, N. B.Meezan, P.Michel, J. D.Moody, E. I.Moses, A.Nikroo, M. D.Rosen, M. B.Schneider, D. J.Strozzi, L. J.Suter, C. A.Thomas, R. P. J.Town, K.Widmann, E. A.Williams. Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma. Nat. Phys., 8, 344(2012).
[14] M. A.Barrios, J. W.Bates, E. M.Campbell, T.Chapman, R.Epstein, C.Goyon, M.Hohenberger, P.Michel, J. D.Moody, J. F.Myatt, J. E.Ralph, S. P.Regan, M. J.Rosenberg, W.Seka, R. W.Short, A. A.Solodov. Origins and scaling of hot-electron preheat in ignition-scale direct-drive inertial confinement fusion experiments. Phys. Rev. Lett., 120, 055001(2018).
[15] D. S.Bailey, L.Divol, G. D.Kerbel, P.Michel, J. D.Moody, J. E.Ralph, M. B.Schneider, S. M.Sepke, D. J.Strozzi, C. A.Thomas. Interplay of laser-plasma interactions and inertial fusion hydrodynamics. Phys. Rev. Lett., 118, 025002(2017).
[16] R. S.Craxton, T.Kessler, S.Letzring, R. W.Short, S.Skupsky, J. M.Soures. Improved laser-beam uniformity using the angular dispersion of frequency modulated light. J. Appl. Phys., 66, 3456(1989).
[17] S. N.Dixit, M. D.Feit, M. D.Perry, H. T.Powell. Designing fully continuous phase screens for tailoring focal-plane irradiance profiles. Opt. Lett., 21, 1715-1717(1996).
[18] S. N.Dixit, A. B.Langdon, D. H.Munro, J. R.Murray. Polarization smoothing in a convergent beam. Appl. Opt., 43, 6639(2004).
[19] H. A.Baldis, S.Depierreux, J.Fuchs, C.Labaune, A.Michard. Modification of spatial and temporal gains of stimulated Brillouin and Raman scattering by polarization smoothing. Phys. Rev. Lett., 84, 3089(2000).
[20] L.Divol, S.Hüller, Ph.Mounaix, V. T.Tikhonchuk. Effects of spatial and temporal smoothing on stimulated Brillouin scattering in the independent-hot-spot model limit. Phys. Rev. Lett, 85, 4526(2000).
[21] R. L.Berger, L.Divol, S. H.Glenzer, R. K.Kirkwood, B. J.MacGowan, J. D.Moody, J. E.Rothenberg, E. A.Williams, P. E.Young. Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma. Phys. Rev. Lett., 86, 2810(2001).
[22] R. L.Berger, L.Divol, D. H.Froula, S. H.Glenzer, R. A.London, N. B.Meezan, P.Neumayer, J. S.Ross, S.Stagnitto, D. J.Strozzi, L. J.Suter. Direct measurements of an increased threshold for stimulated Brillouin scattering with polarization smoothing in ignition hohlraum plasmas. Phys. Rev. Lett., 101, 115002(2008).
[23] W. B.Mori, F. S.Tsung, B. J.Winjum. Mitigation of stimulated Raman scattering in the kinetic regime by external magnetic fields. Phys. Rev. E, 98, 043208(2018).
[24] B.Afeyan, B. J.Albright, L.Yin. Control of stimulated Raman scattering in the strongly nonlinear and kinetic regime using spike trains of uneven duration and delay. Phys. Rev. Lett., 113, 045002(2014).
[25] I.Barth, N. J.Fisch. Reducing parametric backscattering by polarization rotation. Phys. Plasmas, 23, 102106(2016).
[26] K. G.Estabook, W. L.Kruer, K. H.Sinz. Instability generated laser reflection in plasmas. Nucl. Fusion, 13, 952(1973).
[27] J. I.Karush, J. J.Thomson. Effects of finite-bandwidth driver on the parametric instability. Phys. Fluids, 17, 1608(1974).
[28] P. T.Greiling, N. C.Luhmann, S. P.Obenschain. Effects of finite-bandwidth driver pumps on the parametric-decay instability. Phys. Rev. Lett., 36, 1309(1976).
[29] D.Kehne, R.Lehmberg, S.Obenschain, J.Weaver, M.Wolford. Spectral and far-field broadening due to stimulated rotational Raman scattering driven by the Nike krypton fluoride laser. Appl. Opt., 56, 8618(2017).
[30] Y.Cui, W.Feng, Y.Gao, L.Ji, F.Li, X.Li, D.Liu, J.Liu, J.Liu, W.Ma, D.Rao, H.Shi, Z.Sui, T.Wang, L.Xia, X.Zhao. High-energy low-temporal-coherence instantaneous broadband pulse system. Opt. Lett., 44, 2859(2019).
[31] C.Dorrer, E. M.Hill, J. D.Zuegel. High-energy parametric amplification of spectrally incoherent broadband pulses. Opt. Express, 28, 451-471(2020).
[32] R.Bingham, J. E.Santos, L. O.Silva. White light parametric instabilities in plasmas. Phys. Rev. Lett., 98, 235001(2007).
[33] M.Chen, C.Ren, Z. M.Sheng, S. M.Weng, J.Zhang, Y.Zhao, J.Zheng, H. B.Zhuo. Effective suppression of parametric instabilities with decoupled broadband lasers in plasma. Phys. Plasmas, 24, 112102(2017).
[34] R. K.Follett, D. H.Froula, J. F.Myatt, J. P.Palastro, J. G.Shaw, R. W.Short. Suppressing two-plasmon decay with laser frequency detuning. Phys. Rev. Lett., 120, 135005(2018).
[35] M. W.Bowers, E. M.Campbell, T. J. B.Collins, J.-M. G.Di Nicola, G.Erbert, V. N.Goncharov, M.Hohenberger, B. J.MacGowan, J. A.Marozas, F. J.Marshall, P. W.McKenty, L. J.Pelz, P. B.Radha, S. P.Regan, M. J.Rosenberg, T. C.Sangster, W.Seka, D.Turnbull, S. T.Yang, J. D.Zuegel. First observation of cross-beam energy transfer mitigation for direct-drive inertial confinement fusion implosions using wavelength detuning at the National Ignition Facility. Phys. Rev. Lett., 120, 085001(2018).
[36] J. W.Bates, R. K.Follett, R. H.Lehmberg, J. F.Myatt, S. P.Obenschain, J. G.Shaw, J. L.Weaver. Mitigation of cross-beam energy transfer in inertial-confinement-fusion plasmas with enhanced laser bandwidth. Phys. Rev. E, 97, 061202(2018).
[37] C.Dorrer, R. K.Follett, D. H.Froula, J. F.Myatt, J. P.Palastro, J. G.Shaw. Thresholds of absolute instabilities driven by a broadband laser. Phys. Plasmas, 26, 062111(2019).
[38] J.Tinbergen. Astronomical Polarimetry(1996).
[39] T. D.Arber, A. R.Bell, K.Bennett, C. S.Brady, R. G.Evans, P.Gillies, A.Lawrence-Douglas, M. G.Ramsay, C. P.Ridgers, H.Schmitz, N. J.Sircombe. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Controlled Fusion, 57, 113001(2015).
[40] J. A.Cobble, J. C.Fernández, R. J.Focia, R. P.Johnson, D. S.Montgomery, N.Renard-LeGalloudec, H. A.Rose, D. A.Russell. Recent trident single hot spot experiments: Evidence for kinetic effects, and observation of Langmuir decay instability cascade. Phys. Plasmas, 9, 2311(2002).
[41] B. J.Albright, B.Bezzerides, W.Daughton, D. F.DuBois, J. M.Kindel, H. X.Vu, L.Yin. Nonlinear development of stimulated Raman scattering from electrostatic modes excited by self-consistent non-Maxwellian velocity distributions. Phys. Rev. E, 73, 025401(2006).
[42] C.-S.Liu, C.Ren, Z.-M.Sheng, S.-M.Weng, L.-L.Yu, Y.Zhao, J.Zheng. Effects of large laser bandwidth on stimulated Raman scattering instability in underdense plasma. Phys. Plasmas, 22, 052119(2015).
[43] L.Guo, X. T.He, S. E.Jiang, S. W.Li, Z. C.Li, K. Q.Pan, Q.Wang, D.Yang, B. H.Zhang, C. Y.Zheng. Two-plasmon decay instability of the backscattered light of stimulated Raman scattering. Nucl. Fusion, 58, 096035(2018).
[44] J.Li, A. V.Maximov, C.Ren, F. S.Tsung, H.Wen, R.Yan. Three-dimensional particle-in-cell modeling of parametric instabilities near the quarter-critical density in plasmas. Phys. Rev. E, 100, 041201(2019).
[45] P. N.Guzdar, R. H.Lehmberg, C. S.Liu. The effect of bandwidth on the convective Raman instability in inhomogeneous plasmas. Phys. Fluids B, 3, 2882(1991).
[46] P. N.Guzdar, R. H.Lehmberg, C. S.Liu. Induced spatial incoherence effects on the convective Raman instability. Phys. Fluids B, 5, 910(1993).
[47] R. K.Follett, D. H.Froula, A. V.Maximov, J. P.Palastro, F. S.Tsung, H.Wen. Suppressing the enhancement of stimulated Raman scattering in inhomogeneous plasmas by tuning the modulation frequency of a broadband laser. Phys. Plasmas, 28, 042109(2021).
[48] T. R.Boehly, D. K.Bradley, R. S.Craxton, M. J.Guardalben, T. J.Kessler, J. P.Knauer, D. D.Meyerhofer, S.Skupsky, V. A.Smalyuk. Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser. J. Appl. Phys., 85, 3444(1999).
[49] R. K.Follett, D. H.Froula, J. F.Myatt, J. P.Palastro, J. G.Shaw, H.Wen. Thresholds of absolute two-plasmondecay and stimulated Raman scattering instabilities driven by multiple broadband lasers. Phys. Plasmas, 28, 032103(2021).