Journal of Inorganic Materials, Volume. 35, Issue 10, 1112(2020)
To study the respective growths of micro-arc oxidation (MAO) ceramic coatings under three phase duty cycles of 40%-50%-60%, 50%-60%-40%, and 60%-50%-40%, and to thereby improve the compactness and hydrogen permeation resistance of the MAO ceramic coatings on the surface of zirconium hydride, the zirconium hydride matrix went through MAO treatment under constant voltage in the phosphate electrolyte system. On the one hand, the morphology, phase structure, and thickness of the ceramic coatings were analyzed by using scanning electron microscope (SEM), X-ray diffractometer (XRD), and film thickness meter. On the other hand, the hydrogen permeation resistance of the ceramic coatings under the different phase duty cycle was obtained through a vacuum dehydrogenation experiment. The research results indicate that under three phase duty cycle, the accumulated thickness of zirconium oxide ceramic coatings on the surface of ZrH1.8 are 162.6, 175.9, and 158.7 μm, respectively; all of the produced MAO ceramic coatings consist of three phases, namely M-ZrO2, T-ZrO2, and Zr0.95Ce0.05O2. Phase duty cycle has no significant effect on the phase composition of ceramic coatings. Under the phase duty cycle of 40%-50%-60%, the ceramic coating achieves on the surface of zirconium hydride has the thickness of 162.6 μm and the Permeation Reduction Factor (PRF) value of 12.5, indicating a relatively satisfactory hydrogen permeation resistance.
Get Citation
Copy Citation Text
Shaohui YANG, Shufang YAN, Shijiang LI, Weidong CHEN, Pei DU, Wen MA.
Category: RESEARCH PAPER
Received: Nov. 14, 2019
Accepted: --
Published Online: Mar. 15, 2021
The Author Email: YAN Shufang (ysfch@163.com)