Spectroscopy and Spectral Analysis, Volume. 44, Issue 1, 141(2024)
Quantitative Characterization of Components in Neodymium Iron Boron Permanent Magnets by Laser Induced Breakdown Spectroscopy (LIBS)
"Magneto" neodymium iron boron is the most excellent permanent magnet,and it is widely used in the industrial internet, New Energy, 5G communications and many other high-tech fields because of its excellent magnetic properties. Currently, the main analytical methods for elements in Nd-Fe-B are Inductively coupled plasma emission spectrometry (ICP-OES) and X-ray fluorescence spectrometry (XRF). ICP-OES is a wet analytical method with complex sample pretreatment and a long testing period, and the XRF method can be used for direct analysis, but it is challenging to meet the analysis demand of the main light element B in Nd-Fe-B because of its detection ability. Laser-induced breakdown spectroscopy(LIBS) technology has many advantages, such as high analysis efficiency, simple sample pretreatment, direct multi-element analysis, suitable for on-site analysis and on-line, etc., it shows its unique advantage in fast quantitative characterization. In this paper, the LIBS technology is used to study the direct and rapid method for quantitative characterization of multi-elements in Nd-Fe-B. At first, the screening of characteristic spectral lines is completed for nine elements (Nd, Co, B, Dy, Tb, Pr, Cu, Al, Ga) in Nd-Fe-B was characterized quantitatively based on the analysis of the influence of the system laser voltage, laser ablation mode on the spectral signal stability of Nd-Fe-B under different conditions. The analysis conditions are optimized and established, in the end, 720 V laser voltage and 15 pre-ablation pulses and 15 ablation pulses are selected as the analytical conditions of Nd-Fe-B samples. Eight Nd-Fe-B samples were determined by the ICP-OES method. The samples had the gradient difference characteristics of element composition and were used as the standard samples for establishing the analytical method. The calibration curves of Nd, Co, B, Dy, Tb, Pr, Cu, Al and Ga in Nd-Fe-B samples were established by standard curve method which was used to correlate the strength ratio with the concentration.At last, two sintered samples of Nd-Fe-B were selected to perform the quantitative analysis of nine elements with the established quantitative analysis method. The analysis time was less than 30 seconds, and the quantitative results of the LIBS and ICP-OES methods have a good consistency. In this paper, the direct, simultaneous and rapid quantitative characterization of multi-elements in Nd-Fe-B has been achieved by using the Laser-induced breakdown spectroscopy analysis technique. It provides a new technical idea and characterization method for the rapid quantitative characterization of Nd-Fe-B.
Get Citation
Copy Citation Text
LIU Jia, GUO Fei-fei, YU Lei, CUI Fei-peng, ZHAO Ying, HAN Bing, SHEN Xue-jing, WANG Hai-zhou. Quantitative Characterization of Components in Neodymium Iron Boron Permanent Magnets by Laser Induced Breakdown Spectroscopy (LIBS)[J]. Spectroscopy and Spectral Analysis, 2024, 44(1): 141
Received: Jan. 6, 2023
Accepted: --
Published Online: Jul. 31, 2024
The Author Email: Hai-zhou WANG (hzwang@analysis.org.cn)