Semiconductor Optoelectronics, Volume. 42, Issue 6, 868(2021)

Study on Flow and Heat Dissipation Performance of Micro-channels Based on Droplet-like Microstructure

CAO Weihua... SHANG Weijia and ZHU Jiyuan |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less

    In order to effectively improve the heat dissipation performance of the micro-channel radiator, a microchannel radiator with droplet-like microstructure was designed, and the influence of the number and height of the droplet-like microstructure on the pressure loss and heat dissipation performance of the microchannel was studied by simulation method. In this paper, under the conditions as the heat flux of 100W/cm2 and the fluid velocity of 1m/s at the inlet, 9 groups of different micro-channels with droplet-like microstructure were designed. Five groups were studied by changing the number of droplet-like microstructures in a single microchannel. It was found that when the number of microstructures was 7, the comprehensive heat dissipation performance of the microchannel was the best, and the average temperature of the bottom of the microchannel decreased by 18.42K, the heat dissipation coefficient increased by 37.63%. At the same time, four groups of micro-channels were designed based on the number of 7 microstructures to study the influence of the height of the microstructures on the heat dissipation performance of the micro-channels. When the height of each microstructure in the micro-channels increased along the flow direction, the heat dissipation coefficient of the micro-channels basically unchanged, while the pressure loss was reduced by 11.93%.

    Tools

    Get Citation

    Copy Citation Text

    CAO Weihua, SHANG Weijia, ZHU Jiyuan. Study on Flow and Heat Dissipation Performance of Micro-channels Based on Droplet-like Microstructure[J]. Semiconductor Optoelectronics, 2021, 42(6): 868

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 19, 2021

    Accepted: --

    Published Online: Feb. 14, 2022

    The Author Email:

    DOI:10.16818/j.issn1001-5868.2021081901

    Topics