Optoelectronics Letters, Volume. 18, Issue 3, 158(2022)

Path loss of non-line-of-sight ultraviolet light communication channel in polydisperse aerosol systems

Yuzhao MA1...2,*, Huiting JIA2, Huiliang GAO2, and Xinglong XIONG12 |Show fewer author(s)
Author Affiliations
  • 1Tianjin Key Laboratory for Advanced Signal Processing, Civil Aviation University of China, Tianjin 300300, China
  • 2College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
  • show less

    Performance of non-line-of-sight (NLOS) ultraviolet (UV) communication is closely related with the system geometry, the communication range, and the atmospheric parameters. In this paper, we implement a full numerical analysis of the relations of path loss of NLOS UV communication with these factors using the Mie scattering theory and the Monte-Carlo method. In the numerical simulations, the actual polydisperse aerosol systems are used as the transmission medium. Since for the actual aerosol systems the atmosphere conditions may be similar within a short period, the path loss may be exclusively determined by the atmosphere visibility. Hence, we build a relation between the path loss of the communication channel and the atmosphere visibility. Simulation results reveal that for a relatively small communication range, the path loss increases with the visibility. On the other hand, low elevation of the transceiver may reduce the path loss. Our simulation results are useful for the evaluation of performance of the real NLOS UV communication systems.

    Tools

    Get Citation

    Copy Citation Text

    MA Yuzhao, JIA Huiting, GAO Huiliang, XIONG Xinglong. Path loss of non-line-of-sight ultraviolet light communication channel in polydisperse aerosol systems[J]. Optoelectronics Letters, 2022, 18(3): 158

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jul. 24, 2021

    Accepted: Oct. 1, 2021

    Published Online: Jan. 20, 2023

    The Author Email: Yuzhao MA (yzma@cauc.edu.cn)

    DOI:10.1007/s11801-022-1122-x

    Topics