[1] G.Lehmann, K. H.Spatschek. Transient plasma photonic crystals for high-power lasers. Phys. Rev. Lett., 116, 225002(2016).
[2] L.Chopineau, A.Denoeud, A.Leblanc, P.Martin, G.Mennerat, F.Quéré. Plasma holograms for ultrahigh-intensity optics. Nat. Phys., 13, 440(2017).
[3] I. Y.Dodin, N. J.Fisch. Storing, retrieving, and processing optical information by Raman backscattering in plasmas. Phys. Rev. Lett., 88, 165001(2002).
[4] C. G. Durfee, T. J.McIlrath, H. M.Milchberg. High-order frequency conversion in the plasma waveguide. Phys. Rev. Lett., 75, 2494(1995).
[5] P.Audebert, M.Bougeard, T.Ceccotti, P.d’Oliveira, J.-P.Geindre, A.Levy, R.Marjoribanks, P.Martin, P.Monot, F.Quéré, F.Réau, C.Thaury. Plasma mirrors for ultrahigh-intensity optics. Nat. Phys., 3, 424-429(2007).
[6] R.Clarke, B.Dromey, A.Gopal, H.Habara, S.Karsch, R.Kodama, K.Krushelnick, K.Lancaster, S.Moustaizis, D.Neely, P.Norreys, C.Stoeckl, M.Tampo, M.Tatarakis, N.Vakakis, M. S.Wei, M.Zepf. High harmonic generation in the relativistic limit. Nat. Phys., 2, 456-459(2006).
[7] Y.Avitzour, I.Geltner, S.Suckewer. Picosecond pulse frequency upshifting by rapid free-carrier creation in ZnSe. Appl. Phys. Lett., 81, 226(2002).
[8] M. R.Edwards, N. J.Fisch, Q.Jia, K.Qu. Theory of electromagnetic wave frequency upconversion in dynamic media. Phys. Rev. E, 98, 023202(2018).
[9] A. S.Davies, P.Franke, D. H.Froula, A. J.Howard, J. P.Palastro, D.Turnbull. Photon acceleration in a flying focus. Phys. Rev. Lett., 123, 124801(2019).
[10] H.Peng, C.Riconda, S. C.Ruan, S.Weber, C. T.Zhou. Frequency conversion of lasers in a dynamic plasma grating. Phys. Rev. Appl., 15, 054053(2021).
[11] Z.-M.Sheng, H.-C.Wu, J.Zhang. Chirped pulse compression in nonuniform plasma Bragg gratings. Appl. Phys. Lett., 87, 201502(2005).
[12] N. J.Fisch, V. M.Malkin, G.Shvets. Fast compression of laser beams to highly overcritical powers. Phys. Rev. Lett., 82, 4448-4451(1999).
[13] A. A.Andreev, C.Riconda, V. T.Tikhonchuk, S.Weber. Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime. Phys. Plasmas, 13, 053110(2006).
[14] F.Ewald, J.Faure, Y.Glinec, T.Hosokai, S.Kiselev, V.Malka, A.Pukhov, J.-P.Rousseau, J. J.Santos. Observation of laser-pulse shortening in nonlinear plasma waves. Phys. Rev. Lett., 95, 205003(2005).
[15] C.Bellei, C.Kamperidis, S.Kneip, S. P. D.Mangles, S. R.Nagel, Z.Najmudin, C. A. J.Palmer, P. P.Rajeev, J.Schreiber, M. J. V.Streeter. Complete temporal characterization of asymmetric pulse compression in a laser wakefield. Phys. Rev. Lett., 105, 235003(2010).
[16] N. J.Fisch, V. M.Malkin, G.Shvets. Detuned Raman amplification of short laser pulses in plasma. Phys. Rev. Lett., 84, 1208-1211(2000).
[17] R.Bingham, R. A.Cairns, F.Fiúza, R. A.Fonseca, P. A.Norreys, L. O.Silva, R. M. G. M.Trines. Simulations of efficient Raman amplification into the multipetawatt regime. Nat. Phys., 7, 87-92(2011).
[18] J.Fuchs, L.Lancia, J. R.Marquès, G. A.Mourou, C.Riconda, S.Weber. Amplification of ultrashort laser pulses by Brillouin backscattering in plasmas. Phys. Rev. Lett., 111, 055004(2013).
[19] A.Castan, A.Chatelain, M.Chiaramello, A.Frank, J.Fuchs, T.Gangolf, A.Giribono, L.Lancia, J. R.Marquès, M. N.Quinn, C.Riconda, L.Vassura, S.Weber. Signatures of the self-similar regime of strongly coupled stimulated Brillouin scattering for efficient short laser pulse amplification. Phys. Rev. Lett., 116, 075001(2016).
[20] H.Peng, J. Q.Su, Z. H.Wu, Z. M.Zhang, K. N.Zhou, Y. L.Zuo. Single laser pulse compression via strongly coupled stimulated Brillouin scattering in plasma. Phys. Plasmas, 23, 073516(2016).
[21] W.Cheng, D. S.Clark, N. J.Fisch, Y.Ping, S.Suckewer. Amplification of ultrashort laser pulses by a resonant Raman scheme in a gas-jet plasma. Phys. Rev. Lett., 92, 175007(2004).
[22] Y.Avitzour, W.Cheng, N. J.Fisch, M. S.Hur, Y.Ping, S.Suckewer, J. S.Wurtele. Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses. Phys. Rev. Lett., 94, 045003(2005).
[23] W.Cheng, S.Li, J.Ren, S.Suckewer. A new method for generating ultraintense and ultrashort laser pulses. Nat. Phys., 3, 732-736(2007).
[24] S.Li, A.Morozov, S.Suckewer, D.Turnbull. Possible origins of a time-resolved frequency shift in Raman plasma amplifiers. Phys. Plasmas, 19, 073103(2012).
[25] S.Li, A.Morozov, S.Suckewer, D.Turnbull. Simultaneous stimulated Raman, Brillouin, and electron-acoustic scattering reveals a potential saturation mechanism in Raman plasma amplifiers. Phys. Plasmas, 19, 083109(2012).
[26] C.Aniculaesei, E.Brunetti, C.Ciocarlan, S.Cipiccia, J. M.Dias, B.Ersfeld, J. P.Farmer, D. W.Grant, P.Grant, R.Heathcote, M. S.Hur, D. A.Jaroszynski, N.Lemos, P.Lepipas, C. L. S.Lewis, G. G.Manahan, G.Nersisyan, A.Pukhov, G.Raj, D.Reboredo Gil, A.Subiel, G.Vieux, G. H.Welsh, S. M.Wiggins, X.Yang, S. R.Yoffe. An ultra-high gain and efficient amplifier based on Raman amplification in plasma. Sci. Rep., 7, 2399(2017).
[27] Q.Chen, A.Morozov, S.Suckewer, Z.Wu. Stimulated Raman backscattering amplification with a low-intensity pump. Phys. Plasmas, 26, 103111(2019).
[28] P.Antici, P.Audebert, J.Fuchs, A.Héron, S.Hüller, L.Lancia, A.Manci?, J. R.Marquès, M.Nakatsutsumi, C.Riconda, V. T.Tikhonchuk, S.Weber. Experimental evidence of short light pulse amplification using strong-coupling stimulated Brillouin scattering in the pump depletion regime. Phys. Rev. Lett., 104, 025001(2010).
[29] F.Amiranoff, R. L.Berger, M.Blecher, S.Bolanos, M.Chiaramello, J.Fuchs, T.Gangolf, L.Lancia, J.-R.Marqués, C.Riconda, S.Weber, O.Willi. Joule-level high-efficiency energy transfer to subpicosecond laser pulses by a plasma-based amplifier. Phys. Rev. X, 9, 021008(2019).
[30] N. J.Fisch, N. A.Yampolsky. Limiting effects on laser compression by resonant backward Raman scattering in modern experiments. Phys. Plasmas, 18, 056711(2011).
[31] N. J.Fisch, V. M.Malkin. Backward Raman amplification of ionizing laser pulses. Phys. Plasmas, 8, 4698(2001).
[32] I.Barth, N. J.Fisch, K.Qu. Plasma wave seed for Raman amplifiers. Phys. Rev. Lett., 118, 164801(2017).
[33] A. A.Balakin, D. S.Levin, S. A.Skobelev. Compression of laser pulses due to Raman amplification of plasma noises. Phys. Rev. A, 102, 013516(2020).
[34] W. L.Kruer. The Physics of Laser Plasma Interactions(1988).
[35] W.Cheng. Reaching the nonlinear regime of the Raman amplification of ultrashort laser pulses(2010).
[36] X. T.He, Z. M.Sheng, M. Y.Yu, Z. M.Zhang. Hundreds MeV monoenergetic proton bunch from interaction of 1020–21 W/cm2 circularly polarized laser pulse with tailored complex target. Appl. Phys. Lett., 100, 134103(2012).
[37] Y. Q.Gu, S. K.He, W.Hong, J.Teng, M. Y.Yu, B.Zhang, Z. M.Zhang. Envelope matching for enhanced backward Raman amplification by using self-ionizing plasmas. Phys. Plasmas, 21, 123109(2014).
[38] Z. G.Deng, Y. Q.Gu, S. K.He, W.Hong, J.Teng, B.Zhang, Z. M.Zhang, W. M.Zhou. Generation of high-power few-cycle lasers via Brillouin-based plasma amplification. Phys. Plasmas, 24, 113104(2017).
[39] D. S.Clark, N. J.Fisch. Regime for a self-ionizing Raman laser amplifier. Phys. Plasmas, 9, 2772(2002).
[40] S.Bucht, A.Davies, D. H.Froula, D.Haberberger, T.Kessler, J. L.Shaw, D.Turnbull. Raman amplification with a flying focus. Phys. Rev. Lett., 120, 024801(2018).
[41] S.-W.Bahk, I. A.Begishev, R.Boni, S.Bucht, A. S.Davies, D. H.Froula, D.Haberberger, J.Katz, T. J.Kessler, J. P.Palastro, J. L.Shaw, D.Turnbull. Spatiotemporal control of laser intensity. Nat. Photonics, 12, 262-268(2018).
[42] O.Gobert, F.Quéré, A.Sainte-Marie. Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings. Optica, 4, 1298-1304(2017).
[43] D. W.Forslund, J. M.Kindel, E. L.Lindman. Theory of stimulated scattering processes in laser-irradiated plasmas. Phys. Fluids, 18, 1002(1975).
[44] S.Hüller, P.Mulser, A. M.Rubenchik. Nonstationary stimulated Brillouin backscattering. Phys. Fluids B, 3, 3339(1991).
[45] I. D.Carr, D. C.Hanna. Performance of a Nd:YAG oscillator/ampflifier with phase-conjugation via stimulated Brillouin scattering. Appl. Phys. B: Lasers Opt., 36, 83-92(1985).
[46] H. J.Eichler, H.Meng. Nd:YAG laser with a phase-conjugating mirror based on stimulated Brillouin scattering in SF6 gas. Opt. Lett., 16, 569-571(1991).
[47] V. A.Gorbunov, S. B.Paperny?, V. F.Petrov, V. R.Startsev. Time compression of pulses in the course of stimulated Brillouin scattering in gases. Sov. J. Quantum Electron., 13, 900(1983).
[48] F.Gyger, L.Thévenaz, F.Yang. Intense Brillouin amplification in gas using hollow-core waveguides. Nat. Photonics, 14, 700-708(2020).
[49] V.Babin, M.Damzen, A.Mocofanescu, V.Vlad. Stimulated Brillouin Scattering: Fundamentals and Applications(2003).
[50] D.Feldmann, H.Rottke, K. H.Welge, B.Wolff. Multiphoton-ionization of hydrogen atoms in intense laser fields. Z. Phys. D: At., Mol. Clusters, 10, 35-43(1988).
[51] C.-K.Huang, C.Joshi, K. A.Marsh, Z.Nie, M.Sinclair, Y.Wu, C.Zhang. Ionization induced plasma grating and its applications in strong-field ionization measurements. Plasma Phys. Controlled Fusion, 63, 095011(2021).
[52] S. V.Bulanov, T. Z.Esirkepov, M.Kando, A. S.Pirozhkov, N. N.Rosanov. Relativistic mirrors in plasmas. Novel results and perspectives. Phys.-Usp., 56, 429(2013).
[53] N. J.Fisch, E. A.Khazanov, B.Le Garrec, V. M.Malkin, G. A.Mourou, A. M.Sergeev, T.Tajima, Z.Toroker. Exawatt-zettawatt pulse generation and applications. Opt. Commun., 285, 720-724(2012).
[54] M.Grech, H.Peng, C.Riconda, S.Weber, C.-T.Zhou. Dynamical aspects of plasma gratings driven by a static ponderomotive potential. Plasma Phys. Controlled Fusion, 62, 115015(2020).
[55] M.Grech, H.Peng, C.Riconda, J. Q.Su, S.Weber. Nonlinear dynamics of laser-generated ion-plasma gratings: A unified description. Phys. Rev. E, 100, 061201(R)(2019).